La Chimie du Carbonyle et des Substitutions

Notes de cours du Professeur Claude Spino
avec la participation de Jean-Marc Chapuzet (merci!)
Université de Sherbrooke
1999-2005
Table des matières

UNE INTRODUCTION À LA SYNTÈHSE DE PRODUITS NATURELS ........................................6

PREMIÈRE SECTION : LES RÉACTIONS DE SUBSTITUTION NUCLÉOPHILE ..............................................................................................................................8

1. Substitution nucléophile sur les carbones saturés. Aspect mécanistique (Clayden chapitre 17) ........................................................................................................................................................................10

1.1 Mécanismes (Clayden pp. 411-422) ........................................................................................................10

1.2 Stéréochimie de la substitution nucléophile (Clayden pp. 422-423) ..............................................16

1.2.1 Stéréochimie du mécanisme SN2 .................................................................................................16

1.2.2 Stéréochimie du mécanisme SN1 ...............................................................................................17

1.2.3 Stéréochimie du mécanisme SN2’ ............................................................................................19

1.3 Facteurs influençant la substitution nucléophile (Clayden chapitre 17) ...................................20

1.3.1 Nucléofuge (Clayden p. 429-436) ..............................................................................................21

1.3.2 Nucléophile (Clayden pp. 436-443) ...........................................................................................22

1.3.3 Effet des substituants donneurs ou capables de résonance (Clayden pp. 426-729) ................25

1.3.4 Effet de la conformation du site de la substitution ......................................................................30

1.3.5 Effet du solvant (Clayden pp.428-429) ....................................................................................31

1.3.6 Transfert de phase ....................................................................................................................34

COMPRENDS-TU SANS DESSIN ? .................................................................................................37

1.4 Réactions en compétition avec la substitution nucléophile (Clayden pp. 443-444) ............38

1.5 Problèmes dans le Clayden .................................................................................................................42

2. Substitution nucléophile sur les carbones saturés: applications synthétiques (Hornback, chapitre 9.1-9.11) ..................................................................................................................................................43

2.1 Les électrophiles: préparation des halogénures d'alkyles. ..........................................................43

2.2 Addition des composés oxygénés .........................................................................................................52

2.2.1 Addition de l'eau: préparation d'alcools ....................................................................................52

2.2.2 Addition des alcools: préparation d'éthers ................................................................................53

2.2.3 Addition des carboxylates: préparation d'esters ....................................................................56

2.3 Addition des composés soufrés ...........................................................................................................59

2.4 Addition des composés azotés: préparation d'amines ..................................................................60

2.5 Addition des composés phosphorés ....................................................................................................65

2.6 Effet anchimérique ..............................................................................................................................66

2.7 Addition de l'hydrure (H−) .................................................................................................................68
2.8 Addition du cyanure (NC⁻)...............................................................................................................70
2.9 Addition des composés organométalliques (R₃C⁻) (Clayden chapitre 9, p. 211-218)..........................................................................................................................................................71
  2.9.1 Formation d'organométalliques (Clayden chapitre 9).................................................................71
2.10 Problèmes dans le Clayden (chapitre 17).........................................................................................76

DEUXIÈME SECTION : LES CARBONYLES.........................................................................................77
3. Préparation des carbonyles.................................................................................................................78
  3.1 Oxydation des alcools (Clayden chap 24, 637-641)....................................................................78
    3.1.1 Les oxydants à base de chrome (VI).......................................................................................79
    3.1.2 Les oxydants à base d’autres métaux.....................................................................................82
    3.1.3 Les oxydants à base de non-métaux.......................................................................................85
    3.1.4 Oxydation d’alcools allyliques (Clayden p. 875).................................................................90
  3.2 Oxydation avec clivage d’un lien carbone-carbone (Clayden p. 936-939).........................91
  3.3 Oxydation allylique (pp. 564 et 645).......................................................................................97
  3.4 Hydrolyse d’alcynes.......................................................................................................................99

4. Additions nucléophiles sur les carbonyles: aldéhydes et cétones (Clayden, chapitre 6)........................................................................................................................................................................101
  4.1 Réactivité de la fonction carbonyle..............................................................................................101
    4.1.1 Additions électrophiles et nucléophiles..............................................................................101
    4.1.2 Différence de réactivité entre cétones et aldéhydes................................................................102
  4.2 Addition nucléophile des composés oxygénés et soufrés (chapitre 14).................................102
  4.3 Addition d’hydrures (H⁻) (Clayden chapitre 6, pp. 139-141).................................................115
    4.3.1 Hydrures métalliques..............................................................................................................115
    4.3.2 Hydrures provenant d’un lien C-H.......................................................................................118
  4.4 Addition des nucléophiles carbonés : le cyanure (–CN) (Clayden, chapitre 6).................................121
  4.5 Addition des nucléophiles carbonés : les organométalliques (R₃C⁻) (Clayden chapitre 6, p. 142 et chapitre 9).................................................................................................................................................................................................123
    4.5.1 Réactions des organométalliques..........................................................................................123
    4.5.3 Stéréochimie d’addition des nucléophiles sur les carbonyles (Clayden chapitre 34, pp. 887-895).................................................................129
    4.5.4 Les ylures (Clayden chapitre 14, pp. 357-358)....................................................................141
  4.6 Addition nucléophile des composés azotés (Clayden chapitre 14, pp. 350-354).................................147
    4.6.1 Formation d’imines..................................................................................................................147
4.6.2 Formation d'émines……………………………………………………………………………………………………………………………148
4.6.3 Amination réductive et déamination oxydative……………………………………………………………………………………………148

4.7 Addition-1,4 ou addition de Michael (Clayden chapitre 10) ..........................................................150
4.8 Addition sur des analogues de la fonction cétone ou aldéhyde. ..................................................154
4.8.1 Réduction d'imines et de nitriles (Clayden p 354-355) ………………………………………………………………………….154
4.8.2 Addition de réactifs de Grignard sur les imines et les nitriles
(Clayden 301, 351)………………………………………………………………………………………………………………………………157

4.9 Problèmes dans le Clayden :………………………………………………………………………………………………………………………….158

5. Additions nucléophiles sur les carbonyles: acides carboxyliques et leurs dérivés
(Clayden, chapitre 12 et 14) ......................................................................................................................................................159

5.1 Réactivité de la fonction acide et de ses dérivés………………………………………………………………………………………..159

5.2 Addition des nucléophiles oxygénés et soufrés (Clayden chapitre 12)………………160
5.2.1 Formation d'esters…………………………………………………………………………………………………………………………160
5.2.2 Formation de chlorures d'acyle ou d'anhydrides (Clayden p. 294)………………………………………………………………162
5.2.3 Formation de thioacides et thioesters……………………………………………………………………………………………………165

5.3 Substitution nucléophile par les composés azotés (Clayden chapitre 12 et 14)………………………………………………………………………………………………………………………………………………166
5.3.1 Formation d'amides (Clayden p. 284-286)………………………………………………………………………………………………166
5.3.2 Synthèse peptidique (Clayden p. 651, 1171, 1475-1478)……………………………………………………………………………..168

5.4 Substitution nucléophile par l'eau (hydrolyse) (Clayden chapitre 12)………………169

5.5 Addition d'hydrures (H⁻) (Clayden chapitre 12, pp. 297-301)………………171
5.5.1 Réduction des différents groupements carboxyliques …………………………………………………………………………………..171
5.5.2 Sélectivité des réductions: nature de l'hydrure (Clayden chapitre 24, pp. 617-621)…………………………………………………………..176

5.6 Addition des organométalliques (R₃C⁻) ...........................................................................................179
5.6.1 Esters ……………………………………………………………………………………………………………………………………………………179
5.6.2 Chlorures d'acides…………………………………………………………………………………………………………………………….181
5.6.3 Acides carboxyliques………………………………………………………………………………………………………………………….181
5.6.4 Addition-1,4 (ou de Michael)……………………………………………………………………………………………………………….181

5.7 Addition nucléophile sur des analogues soufrés et phosphorés…………………182
5.7.1 Dérivés de l'acide sulfurique…………………………………………………………………………………………………………………182
5.7.2 Dérivés de l'acide phosphorique…………………………………………………………………………………………………………183

5.9 Problèmes dans le Clayden ......................................................................................................................184

6. Les énols, les énolates et leurs réactions (Clayden, chapitres 22, 26, 27, 28 et 29)………..185
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Mécanisme, sélectivité et équilibre des énols et énolates (Clayden chapitre 22)</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Énols et énolates</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Conditions thermodynamiques ou cinétiques</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Stéréochimie et effets stéréoelectroniques</td>
</tr>
<tr>
<td>6.2</td>
<td>Condensation aldolique, de Claisen et autres réactions (Clayden chapitre 27 et 28)</td>
</tr>
<tr>
<td>6.2.1</td>
<td>La réaction d'aldol (Clayden pp. 689-699)</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Condensation de Claisen (Clayden chapitre 28)</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Fragmentation des composés β-dicarbonyles</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Décarboxylation (Clayden pp. 678-679)</td>
</tr>
<tr>
<td>6.3</td>
<td>La réaction d'alkylation</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Les composés β-dicarbonyles (Clayden pp. 676-679)</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Les dianions des composés β-dicarbonyles (Clayden p.683)</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Alkylation vs acylation (Claisen) et (C)- vs (O)-alkylation</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Énamines (Clayden pp. 671-674)</td>
</tr>
<tr>
<td>6.4</td>
<td>Autres carbones nucléophiles stabilisés (Clayden pp. 664-667)</td>
</tr>
<tr>
<td>6.5</td>
<td>Problèmes dans le Clayden</td>
</tr>
<tr>
<td>Annexes</td>
<td>Les mécanismes réactionnels</td>
</tr>
<tr>
<td>1.1</td>
<td>Généralités</td>
</tr>
<tr>
<td>1.2</td>
<td>Utilisation des isotopes</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Marquage isotopique</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Effet cinétique isotopique</td>
</tr>
<tr>
<td>2.</td>
<td>Les diagrammes d'énergie</td>
</tr>
<tr>
<td>3.</td>
<td>Aromaticité</td>
</tr>
</tbody>
</table>
UNE INTRODUCTION À LA SYNTHÈSE DE PRODUITS NATURELS

La vie est faite de molécules. Ces molécules sont, à leur tour, fait presqu’exclusivement avec du carbone, de l’hydrogène, de l’oxygène, de l’azote, du soufre et du phosphore. Quelques métaux, tels le fer, le sodium, le potassium, le magnésium et le zinc s’y retrouvent en petites quantités. Toutes ces molécules, qui forment la famille des produits organiques naturels, se rassemblent et s’assemblent entre elles pour former la cellule, qu’on peut définir comme la plus petite unité vivante.

Les cellules fabriquent deux grandes classes de molécules : les métabolites primaires sont responsables des fonctions de bases comme la respiration et la division et ils forment la charpente de la cellule. Parmi eux, on retrouve les protéines (donc les acides aminés), les acides nucléiques (ADN, ARN, donc les sucres et les phosphates) et les acides gras qui forment la membrane cellulaire; les métabolites secondaires sont responsables des fonctions périphériques (qui peuvent être tout de même vitales) telles que la communication intercellulaire, la défense, la régulation des cycles catalytiques. On retrouve donc dans cette catégorie les hormones, les acides gras spécialisés, les vitamines, les neurotransmetteurs etc.

Si les métabolites secondaires se retrouvent généralement en moindre ‘quantité’ dans la cellule (par exemple, les hormones sont en très basse concentration), leur variété structurale dépasse largement celle des métabolites primaires. Il y a autant de structures différentes de métabolites secondaires qu’il y a de vie sur terre. Autrement dit, bien qu’il n’y ait que 20 différents acides aminés pour faire toutes les protéines de la vie, il existe des milliers d’hormones et de vitamines différentes.

C’est pour cela que les chimistes catégorisent les produits naturels par structure et par voie biosynthétique. Il est peut-être surprenant d’apprendre que des milliers, voire des millions, de produits différents peuvent être fabriqués par la nature via seulement quelques voies biosynthétiques. Il y a la voie des polyacétates (acide gras, prostaglandines, leukotriènes, flavonoïdes, etc.), la voie isoprénique (terpènes, stéroïdes, et plusieurs unités mixtes), la voie des acides aminés, la voie des acides aminés, la voie des alcaloïdes et la voie des shikimates (produits aromatiques un peu spécialisés). Il en existe aussi quelques autres.

La nature a près de 400 000 000 d’années d’expérience dans la fabrication des métabolites. Alors, pourquoi apprendre à fabriquer ces produits dans le laboratoire? La raison n’est pas simple mais le chimiste capable de synthétiser des produits organiques possède le pouvoir d’interagir avec la vie de façon tout à fait unique. Les grandes découvertes médicales, par exemple, sont souvent liées étroitement avec la fabrication de produits organiques. Pensons, bien sûr, à la pilule contraceptive qui a eu un impact social colossal. Mais, plus scientifiquement parlant, l’étude de phénomènes biologiques nécessite souvent des produits de synthèse et aussi, bien sûr, une compréhension à l’échelle moléculaire que seule la chimie organique peut apporter. L’utilité de la synthèse organique ne s’arrête pas à la médecine. Des produits comme les additifs alimentaires, les parfums, les insecticides, et plusieurs autres ont vu le jour grâce à la synthèse de produits organiques.

Le cours COR301 vous initiera donc à la synthèse organique. Comme pour l’étude d’une langue seconde, il nous faut d’abord apprendre le vocabulaire (les réactions chimiques). Puis, nous devrons apprendre la syntaxe du langage (les mécanismes des réactions). Comme la syntaxe donne à l’apprenti linguiste les règles pour former des phrases avec les mots, les mécanismes de réaction donne à l’apprenti chimiste les règles pour construire des suites de réactions (la synthèse n’est qu’une suite de réactions). Êtes-vous surpris d’apprendre qu’on ne peut pas faire n’importe quelle réaction sur n’importe quelle molécule? Et oui, la plupart des molécules peuvent réagir de plusieurs façons différentes et le travail du chimiste consiste à contrôler la réaction, c’est à dire à obliger la molécule à réagir de la manière désirée.
Vous savez que vous pouvez connaître tout le vocabulaire d’une langue et ne pas savoir la parler. La clé du succès repose dans la pratique de la langue. La même chose s’applique en synthèse organique. Faites des problèmes et pratiquez la synthèse. C’est la seule manière de maîtriser le sujet.

Tout comme le maître linguiste fait de la poésie, lorsque vous maîtriserez la synthèse organique, vous pourrez fabriquer des composés d’une complexité surprenante. Vos synthèses seront qualifiées d’élégantes, belles, efficaces, imaginatives… plein de qualificatifs qui paraissent peu scientifiques.

Et pourtant, il s’agit bien de cela. En COR301, je vous enseignerai l’aspect scientifique des réactions et des mécanismes. Je vous initierai à l’art de la synthèse mais je ne pourrai pas vous l’enseigner. Vous devrez la pratiquer. La synthèse d’une molécule est pire que l’ascension d’une montagne. Il existe plusieurs routes possibles qui ne sont pas toutes aussi bonnes les unes que les autres.

Seule l’expérience dicte à l’alpiniste la bonne voie (ou plutôt, une bonne voie). Certaines voies ne mènent nulle part…

…d’autres seront extraordinairement impressionnantes…

Bienvenue dans le monde excitant de la synthèse organique!
PREMIÈRE SECTION : LES RÉACTIONS DE SUBSTITUTION NUCLÉOPHILE

Les réactions de substitution nucléophile sur des carbones hybridés sp$^3$ sont parmi les plus connues et les plus étudiées. Nous verrons d’abord l’aspect mécanistique de cette réaction dans le chapitre 1. Bien que le mécanisme soit simple, les facteurs qui l’influencent ne le sont pas. Entre autres, nous verrons que quatre mécanismes sont en constante compétition dans ces réactions et il faudra apprendre ce qui les influence et quel mécanisme prévaut dans quelle situation.
Puis, au chapitre 2, nous donnerons des exemples d’application des réactions de substitution en synthèse. Nous listerons les exemples par type de nucléophile, H-, -CN, O-, N- etc.

Les réactions de substitution nucléophile sont extrêmement utiles pour fabriquer des liens carbone-carbone ou des liens carbone-hétéroatome (O, N, S, P etc.). Dans l’exemple suivant, la spongistatin 1, isolée d’éponges marines, présente une activité anti-cancer sous la barre du nanomolaire ($10^{-9}$ molaire). Les cellules cancéreuses humaines de type mélanome, pulmonaire, et cervicale sont particulièrement sensibles à son action. Les spongistatines en général agissent en inhibant la mitose cellulaire après avoir sélectivement interagi avec les microtubules. Cependant, les spongistatines ne sont disponibles qu’en infime quantité (400 kilos d’éponge fourni environ 13.8 mg de spongistatin 1. Leur synthèse devient alors inévitablement très intéressante.

Éponge genre *spongia*  

Synthèse d’une partie de la spongistatin 1 par Janine Cossy du CRNS à Paris, France.
Les nucléofuges sont généralement des espèces neutres ou chargées positivement qui ont un lien faible avec le carbone. Le schéma suivant en liste quelques uns des plus fréquemment rencontrés.

Les nucléophiles sont beaucoup plus nombreux et sont catégorisés selon l’atome qui sert de nucléophile (H, C, N, O, S, P, etc.). Ils peuvent être neutre ou chargés négativement.
1. Substitution nucléophile sur les carbones saturés. Aspect mécanistique (Clayden chapitre 17)

1.1 Mécanismes (Clayden pp. 411-422)

Un carbone saturé (ou hybridé sp³) peut être électrophile s’il est lié à un hétéroatome plus électronégatif tel que les halogènes, l'oxygène, le soufre. Ces groupements servent alors de nucléofuges (groupements partants). Il y a deux mécanismes possibles selon la nature du substrat, la nature du groupement partant ainsi que la nature du solvant. Le premier mécanisme que nous allons étudier est celui de la Substitution Nucléophile unimoléculaire ou S_N1. Ce mécanisme comporte deux étapes bien distinctes soit, d'abord, le départ du groupement partant suivi de l'attaque du nucléophile. Par exemple, l'hydrolyse du 2-chloro-2-méthylpropane.

Cette réaction a été étudiée en détail et sa vitesse globale ne dépend que de la concentration du substrat mais pas de la concentration du nucléophile (dans ce cas l'eau). Donc l'expression de la vitesse se lit comme suit: \( v = k[C_{Me3}Cl] \) et cette réaction est du premier ordre. Seul le substrat est impliqué dans l'étape déterminante (étape la plus lente) d'où le nom 'unimoléculaire' (S_N1). Le mécanisme commence par le départ du chlore pour générer un carbocation qui sera ensuite très rapidement neutralisé par le nucléophile. Le diagramme d'énergie présente donc deux barrières d'activation. La première, plus élevée, correspond au départ du groupement partant. Sa hauteur augmente surtout avec la force du lien carbone-nucléofuge et avec l'énergie de solvatation du nucléofuge et du carbocation. La valeur de la deuxième barrière d'activation dépend plutôt de l'énergie de solvatation du nucléophile et du carbocation ainsi que de l'effet stérique empêchant l'approche des deux molécules. Cette énergie d'activation est souvent faible puisque le nouveau lien carbone-nucléophile qui se forme procure une forte stabilisation durant l'attaque du nucléophile. Puisque cette énergie est faible, l'attaque du nucléophile est très rapide en comparaison avec la vitesse d'hétérolyse du lien carbone-nucléofuge et donc la vitesse globale ne dépend que de celle-ci.

Le second mécanisme, celui de la Substitution Nucléophile bimoléculaire ou S_N2, ne comporte qu’une seule étape où le départ du nucléofuge est concerté avec l’attaque du nucléophile. Par exemple, l’hydrolyse du chloroéthane par l’ion hydroxyde dans l’eau. Contrairement au chlorure de t-butylique, le chlorure d’éthyle réagit très lentement avec l’eau et on doit ajouter des ions hydroxyles qui sont beaucoup plus réactifs. Nous verrons plus tard pourquoi il en est ainsi.

\[
\text{CH}_3\text{CH}_2\text{Cl} + \text{HONa} \xrightarrow{\text{H}_2\text{O}} \text{CH}_3\text{CH}_2\text{OH} + \text{NaCl}
\]

La vitesse de la réaction ci-haut dépend de la concentration du substrat et de celle du nucléophile (dans ce cas, l’ion hydroxyde). La vitesse s’exprime donc comme: \( v = k[\text{Me}_3\text{CCl}][\text{NaOH}] \) et cette réaction est dite de second ordre. Les deux partenaires, i.e. le substrat et le nucléophile, sont impliqués dans l’étape déterminante d’où le nom de bimoléculaire (S_N2). Le mécanisme débute par l’attaque du nucléophile sur l’orbitale antilante du lien C-Cl. Ceci affaiblit le lien C-Cl qui se brise en même temps que le lien C-O se forme. Les deux liens sont formés/brisés de façon **concertée**. Les deux liens ne réagiront pas nécessairement de façon synchronisée et normalement, le bris du lien carbone-nucléofuge précède
légèrement la formation du lien carbone-nucléophile, ce qui donne lieu à une barrière énergétique d'activation. Le diagramme d'énergie aura donc une barrière d'activation correspondant à un état de transition ayant le lien carbone-nucléophile pas tout à fait formé et le lien carbone-nucléofuge presque brisé.

Vous pouvez visualiser en 3-D l'orbital antiligante du chlorure de méthyle si vous possédez le logiciel Chem3D. Double-cliquez sur le schéma suivant. Dans ce cas particulier, l'orbital vous semblera bizarre à cause d'une délocalisation dans les 3 liens C-H. Ignorez ce fait. Cela déforme l'orbital mais ne change rien aux principes qui la gouvernent.

Ces deux mécanismes de substitution (SN₁ et SN₂) sont en fait en compétition pour chaque réaction. Si les facteurs (que nous verrons en détail à la section 1.3) qui influencent le mécanisme font en sorte que l'état de transition menant au carbocation (SN₁) est plus bas en énergie que l'état de transition menant au produit SN₂, la réaction passera par un chemin réactionnel SN₁. Si au contraire, l'inverse est vrai, la réaction empruntera la voie SN₂. Les facteurs sont : la nature du nucléofuge et du nucléophile, la stabilité relative du carbocation, les restrictions conformationnelles du substrats, la nature du solvant, et la température. Il possible, en changeant l’un ou l’autre de ces facteurs, qu’une réaction qui empruntait le chemin SN₁ change et emprunte le chemin réactionnel SN₂ (et vice-versa).
De façon générale, le mécanisme SN1 est favorisé lorsque le carbocation est stable, i.e. sur les carbones tertiaires et certains carbones secondaires, sur les carbones benzyliques, en alpha d’un éther et sur les autres carbones adjacents à un groupe capable de stabiliser une charge positive (voir Schéma suivant). De plus, l’effet stérique des carbones tertiaires défavorise le mécanisme SN2. Par contre, la voie SN2 est favorisée lorsque la réaction a lieu sur un carbone primaire et certains carbones secondaires. Dans ces cas l’effet stérique est réduit et la formation du carbocation est lente ou impossible. Cependant, il y a beaucoup d’autres facteurs qui influencent la voie prise par une réaction de substitution tels que le solvant, la nature du groupement partant et du nucléophile. Nous les verrons séparément dans les prochaines sections. La figure suivante montre les substrats propices à suivre le mécanisme indiqué à gauche. Ceci n’est pas une règle absolue.

\[ \text{SN1} \]
\[ \text{SN1-SN2} \]
\[ \text{SN2} \]

R=carbone
X=nucléofuge
Lorsque le substrat est allylique ou propargylique, la réaction de substitution peut se faire au carbone distant du groupement partant avec transposition de la double ou triple liaison. Lorsqu’il y a transposition, nous parlons alors d’un mécanisme $\text{SN}_1$’ ou $\text{SN}_2$’ selon le cas. Dans le mécanisme $\text{SN}_1$’, le carbocation est délocalisé (résonance) sur les trois carbones. L’attaque du nucléophile procède alors sur un ou l’autre des carbones selon des critères que nous verrons plus tard. Des mélanges sont souvent obtenus.

(Double cliquez sur le schéma suivant pour visualiser l’orbitale vide du cation allylique)

Dans le mécanisme $\text{SN}_2$’, toutes les orbitales sont alignées de façon appropriée et le bris du lien C-Cl se fait en même temps que la formation du lien C-O. Il y a trois possibilité d’attaque, soit l’attaque $\text{SN}_2$ (nécessairement antipériplanaire), l’attaque $\text{SN}_2$’ anti et l’attaque $\text{SN}_2$’ syn au groupement partant.

Énergétiquement parlant, les réactions avec transposition ne sont pas différentes des réactions sans transposition de la double liaison. Les réactions $\text{SN}_2$’ sont peut-être légèrement plus énergétiques car elles nécessitent l’alignement de 5 atomes plutôt que 3.
Lorsque le composé allylique est dissymétrique, la régiochimie d’attaque du nucléophile, c’est à dire la sélectivité d’attaque sur un des deux carbones, est dictée par deux facteurs, un stérique, l’autre électronique. Dans la compétition S\textsubscript{N}2 Vs S\textsubscript{N}2’, les deux facteurs vont dans le même sens. L’effet stérique ralenti l’attaque sur le carbone le plus substitué et le produit de S\textsubscript{N}2 possède la double liaison la plus substituée, donc la plus stable. Lorsque que la substitution est égale de part et d’autre, on obtient souvent un mélange.

Apprentissage par problème (APP) 1.1: Vous avez fait la réaction d’étherification suivante au laboratoire. Comment faites-vous pour savoir si la réaction passe par un mécanisme S\textsubscript{N}2 ou S\textsubscript{N}2’?
Décrivez une expérience quelconque qui pourra vous aider à déterminer si la réaction passe par un mécanisme \( \text{S}_2 \) ou \( \text{S}_{2'} \).

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{OH} & \quad \text{OH} \\
\text{EtONa} & \quad \text{EtONa} \\
\end{align*}
\]

1.2 Stéréochimie de la substitution nucléophile (Clayden pp. 422-423)

Le site de la substitution nucléophile peut être un carbone saturé chiral. Si c'est le cas, la substitution peut donner lieu à trois possibilités: rétention ou inversion de la configuration (complète ou partielle) du carbone chiral ou racémisation du centre chiral. Le mécanisme de la substitution jouera un rôle déterminant dans le contrôle de la stéréochimie. D'ailleurs, c'est à partir d'études sur la stéréochimie des produits de substitution nucléophile que l'on est arrivé à déterminer les différents mécanismes de substitution.

1.2.1 Stéréochimie du mécanisme \( \text{S}_2 \)

Comme la réaction de substitution nucléophile bimoléculaire est concertée, la formation du nouveau lien se fait simultanément au bris du lien carbone-nucléofuge (C-X). Il y a donc un état de transition mais aucun intermédiaire. Le nucléophile n'a pas le choix d'approcher du côté opposé au nucléofuge. L'orbite pleine du nucléophile va interagir avec l'orbite antiliante du lien C-X et va contribuer à briser ce dernier. Le mécanisme \( \text{S}_2 \) procède nécessairement avec inversion complète de la stéréochimie du carbone chiral.
C'est l'observation de cette inversion de la stéréochimie qui a permis de conclure à la concertation du bris du lien C-X et la formation du lien C-Nu. Par exemple, la réaction du (S)-(+-)2-bromobutane avec l'iode de sodium dans l'acétone donne uniquement le (R)-(+-)2-iodobutane [Notez qu'un changement de notation R à S n'indique pas nécessairement une inversion de configuration comme le montre la substitution du S-1-benzénesulfonyloxy-1-phényliopropane. Ces préfixes sont conventionnels et dépendent des atomes ou groupes d'atomes qui sont attachés au carbone chiral].

1.2.2 **Stéréochimie du mécanisme SN1**

Les réactions qui procèdent par un mécanisme SN1 comportent deux étapes avec la formation d'un intermédiaire carbocation. Un carbocation a une géométrie plane due à l'hybridation sp² du carbone portant la charge. Cette façon d'arranger les atomes minimise la répulsion entre les différents substituants autour du carbone. Par ce fait même, le nucléophile pourra attaquer de chaque côté du carbocation avec autant de probabilité et on observera une racémisation. En absence de tout autre environnement chiral (solvant, centre chiral proche, etc.) il y aura 50% de chaque énantiomère produit et le mélange obtenu est un **mélange racémique**.
La méthanolyse du chlorure de $(S)$-1-p-chlorophénylbenzyle donne un mélange équimolaire de $(R)$- et de $(S)$-1-méthoxy-1-p-chlorophénylbenzyle, i.e. un mélange racémique. C'est d'ailleurs à cause de ce genre d'observation de racémisation de la configuration absolue des produits que l'on a pu déterminer le mécanisme en deux étapes de la réaction Sn1. Notez que la solvolysé est une réaction de substitution dans laquelle le solvant joue le rôle du nucléophile.

Il est cependant possible d'obtenir une racémisation incomplète du substrat de départ lors d'une substitution unimoléculaire. Cela se présente lorsque le nucléofuge reste près du carbocation, emprisonné dans une cage de solvant, avant que n'attaque le nucléophile. Si l'attaque nucléophile est très rapide, une inversion partielle se produira puisque le nucléofuge va stériquement bloquer la face du carbocation qu'il occupait originellement. Par exemple, lors de la solvolysé du bromure de méthylbenzyle, on observe plus d'inversion que de rétention de configuration.

Il se peut aussi que le nucléofuge ait une interaction favorable, de coordination, avec le nucléophile qui est par conséquent "livré" sur la même face que le nucléofuge. On aura alors plus de rétention que d'inversion. Ces cas ne sont pas facilement prévisibles et ils sont plutôt rares.
1.2.3 Stéréochimie du mécanisme $S_{N2}'$

D’abord, disons que la stéréochimie d’une réaction passant par un mécanisme $S_{N1}'$ est prédite de la même façon que celle passant par un mécanisme $S_{N1}$. La vaste majorité du temps, la stéréochimie est perdue et une racémisation se produit.

Le résultat stéréochimique de la réaction passant par un mécanisme $S_{N2}'$ cependant est plus compliqué. Il y a deux effets importants : l’effet stérique et l’effet électronique. L’effet stérique dicte que le nucléophile va attaquer du côté opposé au groupement partant (attaque anti). L’effet électronique varie beaucoup et est très nuancé, mais normalement dicte que la réaction devrait se produire du même côté que le groupement partant. On peut se représenter la double liaison comme attaquant la liaison antiliane du lien C-X et ceci ‘draine’ les électrons vers ce côté, laissant l’autre dénué d’électrons et donc plus facile à attaquer par le nucléophile. Cet effet est normalement plus fort que l’effet stérique. Le composé correspondant à l’attaque syn est donc souvent majoritaire. Cependant, il ne faut pas se surprendre lorsque des mélanges sont obtenus. Il est plus facile de comprendre le phénomène d’abord sur un composé cyclique, car la rotation des liens n’est pas possible.
Lorsque le composé allylique n’est pas cyclique, la rotation des liens doit être considérée. Les orbitales de la double liaison peuvent s’aligner de deux façons avec l’orbitale $\sigma^*$ du groupement partant. Sur laquelle des ces deux conformations l’attaque $\textit{syn}$ se fera-t-elle? Est-ce que cela revient au même?


1.3 Facteurs influençant la substitution nucléophile (Clayden chapitre 17)
1.3.1 Nucléofuge (Clayden p. 429-436)

Généralement, les bons groupes partants sont les bases conjuguées d'acides forts (i.e. des bases faibles). D'autres groupes ne deviennent de bons nucléofuges qu'après protonation. C'est le cas des ions hydroxyle (HO⁻), alcoxyle (RO⁻), et amidure (R₂N⁻) qui sont de mauvais groupes partant. Une fois protoné, le groupe se dissocie facilement puisque la molécule formée est neutre. Les acides correspondants H₂O, ROH, R₂NH sont des bases conjuguées d'acides forts et de très bons nucléofuges. Le tableau suivant liste la relation entre le pKa des acides et la labilité des différentes bases conjuguées (nucléofuges) correspondantes.

La relation entre la labilité des groupes partants et l'acidité de leur acide conjugué est approximative mais bien réelle puisque cette relation est basée sur la stabilité des espèces en solution. Dans les deux cas, l'espèce partante est la même. La nucléofugacité dépend de la stabilité d'un groupe partant et de son partenaire carbocation, tandis que l'acidité vise le même groupe et un proton. Il y a donc une petite différence, réelle mais faible. La solvatation du nucléofuge affecte grandement son habileté à agir comme groupe partant. Par exemple, les halogénures sont d'excellents groupements partants dans des solvants comme l'éther, le dichlorométhane, l'eau et le méthanol. Ils sont par contre nettement moins bons dans des solvants non-polaires comme l'hexane. Les deux mécanismes Sₙ₁ et Sₙ₂ fonctionnent mieux avec de bons groupes partants mais plus la stabilité du nucléofuge augmente, plus la substitution suivra un mécanisme Sₙ₁.

Contrairement à ce que l'on pourrait penser, l'électronégativité d'un élément n'est pas un guide de la nucléofugacité. Par exemple, le fluor qui est très électronégatif et donc qui stabilise les électrons dans ses orbitales n'est pas un bon nucléofuge. Le problème réside dans la force des liens. Le lien C-F est fort car les orbitales partagées entre les deux atomes sont de même énergie. L'énergie requise pour le briser est trop élevée. L'iode dont les orbitales de valence se retrouvent à un niveau énergétique supérieur à celui du carbone, crée, en général, un lien faible avec celui-ci. Malgré une électronégativité faible, l'iодure est un excellent groupe partant. La nature étant ce qu'elle est, nous verrons plus loin que l'iодure est aussi un excellent nucléophile... Mais une chose à la fois!
La réaction de substitution nucléophile unimoléculaire (S$_{N1}$) n'est pas affectée par la nature du nucléophile car ce dernier n'est pas impliqué dans l'étape déterminante du mécanisme (à quelques exceptions près). Cependant la substitution nucléophile bimoléculaire (S$_{N2}$) est grandement affectée par la force du nucléophile. Tout comme on avait fait la corrélation entre avec la capacité nucléofuge et l'acidité des acides conjugués, il est possible de faire la corrélation entre la nucléophilie et la basicité des différentes bases conjuguées. Cependant, il y a des différences plus marquées dont il faut tenir compte. La différence entre une base et un nucléophile réside dans leur capacité à s'associer avec un proton, dans le premier cas, et avec un électrophile autre qu'un proton dans le deuxième cas (le plus souvent un carbone). Le proton est un électrophile très dur qui préfère les bases dures comme les alcoxydes, le fluorure et les amidures. Ces derniers ont des acides conjugués faibles. Ce sont des bases fortes. Ce sont des espèces réactives. Cependant, leur caractère nucléophile n'est pas aussi marqué que leur caractère basique. Ce sont des nucléophiles marginaux qui, plus souvent qu'autrement, vont donner lieu à des réactions secondaires. La réactivité n'est donc pas nécessairement une mesure de la nucléophilie ou de la basicité.

À l'intérieur d'une même rangée du tableau périodique, la dureté augmente de gauche à droite. L'électronégativité aussi, et par conséquent, les ions négatifs des éléments plus à droite d'une même rangée sont plus stables. Les carbanions sont plus réactifs et meilleurs nucléophiles que les amidures. Ces derniers sont moins stables, plus réactifs et meilleurs nucléophiles que les alcoxydes et les fluorures. Cependant, lorsque l'on descend au sein d'une même famille du tableau périodique, la basicité est inverse de la nucléophilie des groupements. Par exemple, l'ion chlorure est beaucoup moins nucléophile
que les ions bromure et iodure. Pourtant ces derniers sont moins basiques que l'ion chlorure (le solvant joue aussi un rôle crucial dans cette corrélation et l'ion chlorure peut devenir un meilleur nucléophile dans des conditions où il est moins solvaté; vide infra). L'ion fluorure est une base forte puisqu'il s'associe bien au proton. F\(^-\) est un mauvais nucléophile. De même, les ions thiolates sont moins basiques que leurs équivalents oxygénés bien qu'ils soient en général beaucoup plus nucléophiles. Il faut se rappeler que les électrophiles en question sont souvent des carbones partiellement positifs beaucoup plus mous que les protons. Les anions mous comme les iodures et les thiolates sont donc très bien adaptés à ce genre de réactions.

Il faut faire la différence entre réactivité et nucléophilie ou basicité. La réactivité d'une molécule est basée sur sa stabilité en solution. Par contre, la nucléophilie et la basicité représente la préférence d'un réactif pour un site mou ou dur. Ce dernier est un choix de réaction tandis que la réactivité est un état, une caractéristique. Un ion peut être très réactif et mauvais nucléophile ce qui est le cas des amidures par exemple. De même, un bon nucléophile n'est pas nécessairement très réactif comme c'est le cas de l'iodyre ou des thiolates.

Les ions ambidents, comme l'ion sulfinate, offrent deux sites de réaction sur la même molécule. La relation entre nucléophile et base s'exprime ici de façon éloquente. Par exemple l'ion bisulfite HSO\(_3^-\) réagit avec un proton pour donner l'acide sulfinique H\(_2\)SO\(_3\). Par contre la réaction avec l'électrophile MeI donne l'acide méthane sulfonique par substitution du soufre sur l'iodyre de méthyle. Ce phénomène s'explique par la dureté de l'oxygène qui offre un site plus favorable au proton comparativement au soufre plus mou qui préfère réagir avec l'électrophile mou. La molécule n'a pourtant qu'une seule et même force de réactivité.

À titre de comparaison, le tableau suivant fourni une liste de nucléophiles avec leur vitesse respective de réaction pour la substitution nucléophile S\(_{N2}\) de l'iodyre de méthyle dans le méthanol.

<table>
<thead>
<tr>
<th>Nucléophile</th>
<th>k2 (relatif)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)OH</td>
<td>1</td>
</tr>
<tr>
<td>F(^-)</td>
<td>5 x 10(^2)</td>
</tr>
<tr>
<td>MeCO(_2)(^-)</td>
<td>2 x 10(^4)</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>2.3 x 10(^4)</td>
</tr>
<tr>
<td>(MeO)(_3)P</td>
<td>1.6 x 10(^5)</td>
</tr>
<tr>
<td>Pyridine</td>
<td>1.7 x 10(^5)</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>3.2 x 10(^5)</td>
</tr>
<tr>
<td>Me(_2)S</td>
<td>3.5 x 10(^5)</td>
</tr>
<tr>
<td>PhNH(_2)</td>
<td>5 x 10(^5)</td>
</tr>
<tr>
<td>PhSH</td>
<td>5 x 10(^5)</td>
</tr>
<tr>
<td>PhO(^-)</td>
<td>5.6 x 10(^5)</td>
</tr>
</tbody>
</table>
L'iodure et les thiophénolates ou les thiolates sont parmi les meilleurs nucléophiles pour les $S_N2$. Il faut tout de même faire attention lorsque l'on compare les nucléophiles entre eux car la nature de l'électrophile peut affecter l'ordre du tableau. De plus, le solvant et l'effet stérique vont jouer un rôle important. Par exemple le tert-butylate est volumineux et même s'il est plus basique que le méthanoate ($p_{ka}$ 18 et 15.2 respectivement), il est beaucoup moins nucléophile compte tenu de sa grosseur. En effet, la réaction acide-base est beaucoup moins sensible à l'effet stérique que la réaction de substitution puisque le proton est un site beaucoup plus petit qu'un carbone.

Un bon nucléophile peut être aussi un bon nucléofuge. C'est le cas de l'iodure par exemple. Ceci peut être expliqué par la polarisabilité du nuage électronique de ce groupe. Il est bon nucléophile car il est mou et polarisable. L'iodure est souvent moins bien solvaté que les autres nucléophiles chargés. Lorsqu'il déplace un chlorure sur un chlorure d'alkyle, par exemple, l'équilibre est déplacé vers l'iodure d'alkyle et l'ion chlorure et ceci malgré le fait que le lien C-Cl est plus fort que le lien C-I. En effet, l'ion chlorure étant plus dur et mieux solvaté est moins bon nucléophile et ne déplacera pas l'iodure sur l'alkyle. D'un point de vue cinétique (vitesse de réaction), l'attaque d'un iodure est rapide et efficace. Par contre, ses liens avec le carbone sont souvent faibles car ses électrons sont sur un niveau orbitariale plus élevé. Il peut donc à son tour servir de nucléofuge. Grâce à cette caractéristique, l'iodure est souvent utilisé comme intermédiaire dans les substitutions nucléophiles. Le chlorure de benzyle, par exemple, réagit lentement avec les alcoolates. Pour accélérer la réaction on ajoute une quantité catalytique d'iodure de tétrabutylammonium. L'iodure, qui est un meilleur nucléophile qu'un alcoolate, déplace le chlorure rapidement. Par la suite, l'alcoolate déplace l'iodure plus rapidement car celui-ci est aussi meilleur nucléofuge que le chlorure. Nous avons donc accéléré la réaction en accélérant l'étape lente, i.e. le déplacement du chlorure. Le lien C-Cl étant plus fort que le lien C-I, le chlorure est moins bon nucléofuge et sa réaction avec l'alcoolate est plus lente. Sa réaction avec l'ion iodure est suffisamment rapide parce que l'ion iodure est un meilleur nucléophile que l'alcoolate. Ce dernier est souvent mieux solvaté et ses électrons mieux retenus. Par contre, une fois l'iodure de benzyle fabriqué, l'alcoolate déplace celui-ci plus rapidement car le lien C-I est plus facile à briser. La force du lien C-O empêche l'iodure de déplacer l'alcoolate ($RO^-$) qui est d'ailleurs un bien mauvais nucléofuge.
1.3.3 Effet des substituants donneurs ou capables de résonance (Clayden pp. 426-729)

Nous avons déjà étudié les facteurs qui influencent la vitesse des réactions de substitution nucléophile. Mais quels sont les facteurs qui régissent le mécanisme? C'est à dire, pourquoi une réaction de substitution procède-t-elle par un mécanisme $S_N2$ ou $S_N1$? Il est bien sûr difficile de répondre à cette question. Cependant, il y a des cas évidents et facile à comprendre. Ces deux mécanismes sont toujours en compétition. Il suffit parfois de changer de solvant pour qu'une réaction $S_N2$ devienne soudainement $S_N1$ et vice versa. Nous verrons chaque facteur en détail mais les généralités suivantes sont de mises: Le mécanisme $S_N1$ intervient lorsque le nucléophile est faible, le nucléofuge est fort et le carbocation est stable. Le $S_N2$ intervient lorsque le nucléophile est fort, le nucléofuge est faible et le carbocation est instable. En général, le mécanisme $S_N1$ est favorisé lorsque l'intermédiaire carbocation est particulièrement stable. La vitesse de réaction varie de façon importante en fonction des substituants sur le carbone portant la charge. La vitesse relative de l'hydrolyse d'un bromure $R-Br$ par l'eau en alcool varie comme suit:

<table>
<thead>
<tr>
<th>Substituant</th>
<th>Vitesse relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CH_3Br$</td>
<td>1</td>
</tr>
<tr>
<td>$CH_3CH_2Br$</td>
<td>1</td>
</tr>
<tr>
<td>$Me_2CHBr$</td>
<td>12</td>
</tr>
<tr>
<td>$Me_3CBr$</td>
<td>1,200,000</td>
</tr>
</tbody>
</table>

Cela est dû à la stabilité du carbocation formé dans la première étape qui est l' étape lente donc déterminante. Plus cette étape est favorisée, plus la réaction est rapide. Les carbocations tertiaires sont
les plus stables tandis que les carbocations primaires sont les moins stables. Les raisons principales de leur stabilité est l'effet inductif donneur des alkyles et l'hyperconjugaison. Pour un carbocation primaire, il n'y a que 3 formes d'hyperconjugaison alors que le cation t-butyle en a 9. L'hyperconjugaison n'est rien de plus qu'une forme limite de résonance qui confère un certain caractère négatif aux carbones en α du carbocation.

La réaction S_N1 est aussi favorisée lorsque le carbocation possède un ou plusieurs groupements donneurs ou autrement stabilisants en α. Par exemple, les groupements vinyles, aryles, éthers, amines, ou tout autre groupement contenant un hétéroaome capable d'agir comme π-donneur.

Le mécanisme S_N2 est favorisé lorsque l'attaque du nucléophile n'est pas empêchée, stériquement ou autrement. La vitesse diminue rapidement avec la substitution du carbone électrophile à cause de l'effet stérique. Un bon nucléophile réactif et un carbocation moins stable mais peu encombré seront autant de bonnes conditions pour un mécanisme S_N2.

**Vitesse relative de déplacement S_N2 par NaOH**

CH₃Br   30
CH₃CH₂Br  1
RCH₂CH₂Br 0.4
Me₂CHBr 0.002
Me₃CBr 0.001
Me₃CCH₂Br 0.00001
Cependant, les substituants capables de donner une paire d'électrons accélèrent aussi la réaction SN2 puisqu'ils favorisent en quelque sorte le départ du groupe partant. L'état de transition est partiellement chargé et les groupements donneurs peuvent le stabiliser. L'effet principal est l'affaiblissement du lien carbone-nucléofuge par le substituant donneur. Naturellement, si l'effet donneur du substituant est trop grand, la réaction passera par un mécanisme SN1. De plus, un groupement électroattracteur comme un ester accélère la réaction en induisant une plus grande charge positive sur le carbone réactif. L’accélération est donc cinétique (vitesse de réaction) et non pas thermodynamique (force du lien). Notez que ce groupement déstabilise une charge positive et la réaction procédera rarement par SN1 dans ces cas là.

Vitesse relative de déplacement SN2

CH₃CH₂Br  1  
CH₂=CH₂CH₂Br  40  
MeCO₂CH₂Br  100  
PhCH₂Br  120  
MeOCH₂Br  400  

Notez que la SN avec des organométalliques et des hydrures sur un α-halo carbonyle est la plupart du temps plus lente que l’addition sur le carbonyle lui-même. Par contre, d’autres nucléophiles vont substituer l’halogène sans toucher au carbonyle. Le schéma suivant montre plusieurs exemples qui devraient clarifier la situation. Essentiellement, les cétones et aldéhydes sont plus réactifs que l’halogénure. Cependant, la SN2 se produira avec des nucléophiles qui réagissent réversiblement avec le carbonyle (OR, NR₂, SR, etc.) La seule exception est le cyanure qui donne la cyanohydrine (la
substitution de l'halogénure est une réaction secondaire ici). Les acides carboxyliques et dérivés sont moins réactifs que les cétones et aldéhydes et vont subir la substitution de l'halogène avec la plupart des nucléophiles sauf les organométalliques et LiAlH₄. Les cuprates et NaBH₄ vont réagir avec l'halogénure via une S_N2 (c.f. chapitres 3 et 4 pour les réactions sur les carbonyles).

Il faut bien comprendre que les mécanismes S_N1 et S_N2 sont des mécanismes en compétition constante. Il suffit d'avoir des conditions où le nucléofuge part plus vite que le nucléophile attaque pour obtenir un mécanisme S_N1 et vice versa pour S_N2. En fait, il est possible qu'une même réaction passe par les deux mécanismes. Il s'agirait alors de conditions de réaction où le départ du nucléofuge procède à une vitesse semblable à celle de l'attaque du nucléophile.

Reprendons les vitesses relatives d'hydrolyse des trois derniers tableaux. Il est fort probable que le bromure de t-butyle ne subisse qu'une substitution unimoléculaire (S_N1) peu importe le nucléophile choisi. Par contre, le bromométhane subit l'hydrolyse par l'eau ou l'ion hydroxyde probablement par un mécanisme S_N2. Voici de quoi aurait l'air cette comparaison sur un diagramme d'énergie (les comparaisons sont qualitatives seulement). On voit clairement que la vitesse de réaction des S_N2 est dépendante de la réactivité du nucléophile contrairement à la vitesse des S_N1. C'est pourquoi le bromométhane s'hydrolyse très lentement dans l'eau, plus lentement que le bromure de t-butyle, mais plus rapidement que ce dernier dans l'hydroxyde de sodium aqueux.
A titre d'exemple, prenons la réaction de déplacement $S_N2$ du 1-chlorostyrène par l'ion cyanure. Cette réaction passe par un mécanisme $S_N2$ (diagramme de gauche). La même réaction avec le 2-bromostyrène passe encore par un $S_N2$ mais presque à la limite de la formation d'un carbocation (diagramme du centre). Enfin, avec l'iode, la réaction est de type $S_N1$ car maintenant le nucléofuge est bon et la formation du carbocation précède l'attaque par l'ion cyanure.

\[
\begin{align*}
\text{Ph} & \quad X \quad \xrightarrow{\text{NaCN}} \quad \text{Ph} & \quad \text{CN} \quad + \quad \text{NaX} \\
X = \text{Cl} & \quad X = \text{Br} & \quad X = \text{I}
\end{align*}
\]

Au contraire, si on part avec une réaction normalement $S_N1$, il est possible de la rendre $S_N2$ en changeant, par exemple, la réactivité du nucléophile. L'iode de benzyle réagit avec l'ion cyanure de façon $S_N1$. Cependant, avec de meilleurs nucléophiles comme l'azoture et l'ion phénolate, le mécanisme devient vite $S_N2$. Nous pouvons faire des scénarios similaires en changeant le nucléophile, le nucléofuge, le solvant ou le substrat.
1.3.4 Effet de la conformation du site de la substitution

Les composés cycliques offrent un site de réaction qui peut différer des composés acycliques puisque la tension, l'angle et la longueur des liens peuvent varier. Les cycles à 3 et 4 membres possèdent des angles de liaison de 60 et 90° respectivement. L'angle idéal d'un tétrahèdre est de 109.5° et le fait d'hybrider le carbone sp² (angle idéal de 120°) lors des réactions S_N1 ou S_N2 ne fait qu'empirer une situation déjà très tendue. Donc les deux réactions se font plus difficilement, à une vitesse réduite et avec des rendements moins bons que les réactions semblables sur les composés acycliques correspondants.

(Double cliquez sur les figures suivantes pour visualisation en 3-D)

Les cycles à 5 membres n'offrent pas de différence significative à la réaction S_N2 par rapport aux composés acycliques puisqu'il y a déjà des interactions transannulaires éclipsées déstabilisantes par rapport au composé acyclique correspondant. Ces interactions ne sont que remplacées par d'autres à l'état de transition. Cependant, la réaction S_N1 gagne en vitesse car le carbocation enlève certaines interactions éclipsées dans la molécule de départ. Pour les cycles à 6 membres, c'est l'inverse. La réaction S_N1 se fait à une vitesse comparable à celle des composés acycliques puisque le carbocation enlève certaines interactions gauches mais le cycle à six membres est déjà libre d'interactions.
transannulaires sérieuses. C'est la vitesse des réactions $S_N2$ qui diminue parce que le nucléophile crée maintenant des interactions transannulaires qui n'étaient pas présentes sur le cycle de départ. Les cycles de 7 à 11 membres ont des vitesses $S_N2$ presque identiques à celles des composés acycliques. Cependant la vitesse des réactions $S_N1$ augmente puisque le départ du groupe $X$ relâche certaines tensions et interactions transannulaires (n'oubliez pas que seuls les cycles à 6 et 14 membres peuvent adopter des conformations libres d'interactions et de tensions). Les macrocycles, i.e. les cycles de 12 membres ou plus ressemblent aux composés acycliques pour ce qui est des deux types de substitution nucléophile.

1.3.5 Effet du solvant (Clayden pp.428-429)

Les réactions $S_N$ sont des processus hétérolytiques, i.e. le bris des liens se fait de façon ionique où un des atomes part avec les deux électrons laissant derrière un carbone appauvri en électrons. Elles ont lieu
en solution et le solvant aura un effet drastique sur la vitesse des réactions par la solvatation des espèces ioniques impliquées. Les interactions dipolaires et hydrophobiques du solvant avec les différents produits de départ, intermédiaires, états de transition et produits finaux vont jouer un rôle stabilisant ou désstabilisant et vont influencer le cours et la vitesse des réactions.

Règle générale, plus un solvant est polaire, plus il pourra stabiliser, solvater des espèces chargées. Au contraire, les solvants non-polaires vont désstabiliser les espèces chargées. Mais il est important de comprendre quelles espèces influencent la vitesse et le cours d'une réaction pour conclure si le solvant aura un effet marqué. Seuls les intermédiaires ou produits impliqués dans la ou les étapes déterminantes pourront affecter la vitesse globale de réaction par leurs interactions avec le solvant.

La réaction $S_N1$ est favorisée par les solvants très polaires puisque son étape lente consiste en la formation d'une espèce chargée, le carbocation. Par exemple, le 2-méthyl-2-bromopropane subit la solvolyse 1000 fois plus rapidement dans l'eau que dans l'éthanol puisque ce dernier est moins polaire. D'autre part, les solvants polaires augmentent aussi la vitesse des réactions $S_N2$ puisque l'état de transition est aussi partiellement chargé. Cependant, leur influence est moindre et dépend de la nature du nucléophile comme on va le voir plus loin. Le nucléophile n'influence pas la réaction $S_N1$.

![Diagramme SN1](image)

Puisque la vitesse de la réaction $S_N2$ est directement proportionnelle à la concentration du nucléophile, sa solvatation ainsi que celle de l'électrophile affecteront la vitesse de la substitution. Si le nucléophile est chargé, comme l'éthanoate de sodium, ou si le substrat est chargé, comme un sel de sulfonium, ou encore si les deux sont chargés, alors un solvant **polaire protique** solvatera ceux-ci et **diminuera** la vitesse de la réaction en empêchant le nucléophile de s'approcher du substrat.
L'état de transition étant seulement partiellement chargé, le solvant polaire solvatera mieux les produits de départ que l'état de transition. La diminution de la vitesse de la réaction est d'autant plus importante que le solvant soit polaire et protique. Si le nucléophile et l'électrophile sont chargés, la diminution de la vitesse sera beaucoup plus marquée. Un solvant moins polaire augmentera la vitesse de la réaction. Pour les substrats et nucléophiles neutres, il y a une augmentation de la vitesse de réaction comme vu précédemment.

Nous avons mentionné les solvants polaires protiques. Ce sont des solvants polaires possédant un lien X-H et capables de faire des ponts hydrogènes avec des espèces chargées. Le méthanol, l'eau, l'éthanol, les thiols, les amines primaires et secondaires etc. sont des solvants polaires protiques. La sphère de solvatation est d'autant plus ferme qu'il y a de ponts hydrogènes. Le nucléophile ou le substrat ont alors de la difficulté à sortir de la cage de solvant pour réagir avec l'électrophile. Il existe aussi des solvants polaires aprotiques qui sont très bons pour solvater des contre-ions positifs comme le sodium, le
lithium etc. mais relativement peu efficaces pour solvater les nucléophiles chargés négativement. C'est le cas des solvants comme le diméthyl sulfoxide (DMSO), l'hexaméthylephosphoramide (HMPA) et le diméthylformamide (DMF). Ces solvants ont comme effet net d'accélérer grandement les réactions \( S_N1 \) et \( S_N2 \) même lorsqu'un nucléophile est chargé. On parle alors d'un nucléophile "à nu" (naked ion) qui est beaucoup plus réactif que normalement.

Par exemple, la substitution nucléophile de l'azoture de sodium sur l'iодure de méthyle procède 100,000 fois plus rapidement dans le DMF que dans le méthanol. Il y a aussi un renversement dans l'ordre habituel des nucléophiles. Par exemple, l'ion chlorure qui est normalement moins nucléophile que l'iodyure dans les solvants comme le méthanol, l'eau, ou l'éther, devient plus nucléophile que l'iodyure dans le DMSO. Cela est dû au fait que l'ion chlorure est beaucoup moins solvaté que l'ion iodure dans les solvants qui comportent un groupement positif relativement mou comme le soufre.

1.3.6 Transfert de phase

Il arrive parfois que certains nucléophiles inorganiques (e.g. NaOH, KI, NaCN) soient insolubles dans les solvants comme l'éther, le dichlorométhane, et même le DMSO. Ils sont souvent solubles dans l'eau mais alors le substrat organique, lui, ne l'est pas. C'est le cas, par exemple, de la réaction entre le bromure d'éthyle (insoluble dans l'eau) et le cyanure de potassium (insoluble dans les solvants organiques). La catalyse par transfert de phase pour la substitution nucléophile peut alors être utilisée. Dans ces conditions, l'eau et un solvant organique immiscibles sont en contact dans un ballon de
réaction et agités fortement pour maximiser la surface de contact. Le cyanure de potassium est dissout dans l'eau tandis que l'électrophile se trouve dans la phase organique. Puis, on ajoute un agent de transfert de phase. Il y en a plusieurs, mais parmi les plus populaires on retrouve les éthers couronnes. Ces derniers sont des macrocycles possédant des oxygènes liés entre eux par des ponts alcanes, souvent éthanes.

En présence d'ions comme le potassium, le sodium et le lithium, l'éther couronne chélate l'ion à l'intérieur de sa cage polaire avec les oxygènes. Les éther-couronnes de grosseurs différentes sont plus ou moins sélectifs pour les ions qui ont un diamètre idéal pour la complexation. Le 18-C-6 (pour 18 atomes-couronne-6 oxygènes) est sélectif pour les ions potassium. Dans sa conformation préférée, tous les oxygènes pointent vers l'ion à l'intérieur et les ponts hydrophobes éthanes sont orientés vers l'extérieur. Cela rend le complexe soluble à la fois dans les solvants organiques et l'eau. Il s'établit un équilibre de concentration entre les deux phases et les ions peuvent ainsi passer d'une phase à l'autre. Autrement dit, le complexe KCN•18-C-6 est partagé entre la phase aqueuse et organique. Cela à pour effet de permettre la réaction avec l'électrophile dans la phase organique.
De plus, l'éther couronne à un effet accélérateur puisqu'il laisse derrière un nucléophile "nu" i.e. non-solvaté et libre de son contre-ion. Lors de la substitution, l'ion cyanure est remplacé par un ion bromure. Une fois la S_N2 terminée, le complexe KBr•18-C-6 revient dans l'eau et échange un bromure pour un cyanure et le cycle recommence (encore une fois, ceci est un équilibre et la réaction étant rapide, l'équilibre est rapidement déplacé vers les produits finaux).
COMPREND-TU SANS DESSIN ?

a) Dessinez en 3-D un cycle à 7 et à 8 membres. Il y a plusieurs conformations possibles, discutez-en. Placez deux groupements quelconques (méthyles par exemple) et regardez ce qui leur arrive lorsque vous changez la conformation de la molécule.

b) Montrez, à l’aide d’un dessin 3-D, pourquoi la réaction S_N1 est accélérée sur les cycles à 8-membres.

c) Dessinez en 3-D l’hydroxyde de sodium dans le méthanol. Montrez la coordination de l’ion hydroxyde avec le méthanol et la solvatation de l’ion sodium. Pour les besoins de la cause, mettez 4 molécules de méthanol pour solvater une molécule de sodium et la même chose pour l’ion hydroxyde. Ne montrez qu’une seule couche de solvant dans chaque cas.

d) Dessinez en 3-D l’ion benzylium (carbocation benzylique fait à partir du chlorure de benzyle) avec toutes les orbitales impliquées dans la résonance. Montrez tous les hydrogènes.
1.4 Réactions en compétition avec la substitution nucléophile (Clayden pp. 443-444)

Les réactions de S_N que nous venons de voir donnent souvent de bons rendements et peu de produits secondaires. Ce n'est pas toujours le cas. Il y a maintes complications pour certaines réactions ou pour certains substrats en particulier. Les deux réactions souvent en compétition avec la substitution sont l'élimination et les réarrangements. Par exemple, observons les résultats obtenus avec la substitution du 3,3-diméthyl-2-butanol par l'acide bromhydrique.

Cette réaction conduit au 3,3-diméthyl-2-bromobutane B comme produit majoritaire mais aussi à une grande proportion de divers produits secondaires. Les 4 autres produits sont des produits de réarrangement et d'élimination. Nous allons maintenant voir d'où ils proviennent. D'abord établissons le mécanisme de la réaction comme étant S_N1 puisque le site d'attaque est encombré, le bromure est un nucléophile moyen et l'eau est un solvant polaire, donc favorisant la formation de charge. Le départ de l'eau après protonation constitue donc la première étape et ceci donne lieu au carbocation comme intermédiaire. Ce carbocation à un temps de vie appréciable et si l'attaque du nucléophile n'a pas lieu immédiatement, il peut être sujet à plusieurs autres réactions.

D'abord, le réarrangement d'un méthyle qui migre sur le carbocation secondaire pour en donner un nouveau, celui-là tertiaire. Ce genre de réarrangement procède généralement à une vitesse légèrement plus faible que celle de l'attaque d'un nucléophile mais il peut parfois compétitionner. La force motrice de ce réarrangement est bien sûr la stabilité accrue du carbocation tertiaire par rapport à celle du carbocation secondaire. Ce nouveau carbocation est lui aussi sujet au même loi que le premier, i.e. qu'il peut additionner l'ion bromure pour donner le second produit C ou se réarranger encore, ou subir l'élimination d'un proton.
L'élimination d'un proton provient de la dualité des nucléophiles et des bases. Chacun peut se comporter comme une base où un nucléophile et cela dépend des conditions de réaction et de la nature du nucléophile et de l'électrophile. L'ion bromure est un ion beaucoup plus nucléophile que basique puisque HBr est un acide fort. Cependant, l'eau dans le milieu peut servir de base pour arracher un proton et donner l'alcène correspondant. Chaque carbocation peut subir cette élimination pour donner les 3 différents alcènes observés D-F. Lorsque l'élimination se produit sur un carbocation, le mécanisme est appelé E1 par analogie à SN1. La réaction E2 est aussi possible comme on va le voir plus loin. La réaction E1 a la même étape déterminante que la SN1, i.e. la formation du carbocation, et sa vitesse est donc indépendante de la concentration de la base utilisée.

Il est évident que seulement certains substrats donneront un mélange de produits aussi complexe. D'abord, il doit y avoir des protons en β disponibles pour l'élimination. Ensuite, la migration doit
produire un carbocation aussi stable ou plus stable que le premier. L'apparition des différents produits est explicable en termes d'énergies d'activation relatives des différents processus en compétition. La réaction présentée ici n'est pas à l'équilibre. Si elle l'était, les produits les plus stables seraient majoritaires. En conditions cinétiques, les produits formés le plus rapidement seront majoritaires. Puisque le 3,3-diméthyl-2-bromobutane \( \text{B} \) est majoritaire, on doit conclure que sa formation est plus rapide que celle des produits de réarrangement ou l'élimination. Par contre, le 2,3-diméthyl-3-bromobutane \( \text{C} \) est produit en plus grande quantité que les 3 autres produits minoritaires et il faut donc que le réarrangement soit plus rapide que l'élimination. Le carbocation tertiaire étant plus stable que le carbocation secondaire, sa formation est irréversible.

N'oubliez pas que l'étape lente est la formation du premier carbocation. Le reste ne contribue pas à la vitesse globale de la réaction. Cependant, le ratio des produits est nécessairement dépendant des vitesses des réactions subséquentes. La vitesse globale = \( k \left[ R-X \right] \) seulement. Le ratio des produits de réarrangement \( \text{C}, \text{E}, \text{F} \) par rapport à ceux de \( \text{B} \) et \( \text{D} \) dépend seulement de la vitesse relative entre la migration du méthyle \( \text{A}^+ \rightarrow \text{C}^+ \) et la formation des produits \( \text{B} \) et \( \text{D} \). Le ratio des produits \( \text{C}, \text{E} \) et \( \text{F} \) dépend de leur vitesse relative de formation.

Augmenter la température à pour effet de diminuer la sélectivité d'une réaction. Puisque l'élimination et les réarrangements sont souvent secondaires, le fait d'augmenter la température augmente la quantité de produits d'élimination ou de réarrangement. En fait, une plus haute température n'augmente que la quantité du produit normalement minoritaire.
Les réarrangements sont impossibles avec la réaction $S_{N2}$ puisqu'il n'y a pas d'intermédiaire carbocationique. Cependant les réactions d'élimination sont en compétition avec la substitution et elle peut même devenir majoritaire. La réaction $S_{N2}$ requiert souvent un nucléophile plus puissant que pour les réactions $S_{N1}$, comme les alcoolates par exemple, qui sont alors aussi de bonnes bases. L'arrachement du proton se fait donc de façon concertée avec le départ du groupe partant et, par analogie au mécanisme $S_{N2}$, on parle alors d'un mécanisme $E2$.

\[
\begin{align*}
\text{Br} & \quad \text{EtONa} \\
\text{EtOH} & <--- \text{90\%} \quad \text{10\%} \\
\end{align*}
\]

Le pourcentage de produits d'élimination varie avec la basicité du nucléophile. En contre-partie, la basicité d'un composé varie avec sa dureté. Le proton étant un électrophile dur, plus la base (nucléophile) est dure, plus elle a d'affinité pour le proton, i.e. plus elle est basique plutôt que nucléophile. Une base forte sur un substrat encombré donne donc beaucoup de produits d'élimination. Un bon nucléophile sur un substrat peu encombré donne beaucoup de substitution.

\[
\begin{align*}
\text{F}^-, \quad \text{MeO}^- , \quad \text{Me}_2\text{N}^- , \quad \text{R}_3\text{C}^- , \quad \text{NC}^- , \quad \text{Cl}^- , \quad \text{Br}^- , \quad \text{N}_3^- , \quad \text{I}^- , \quad \text{PhS}^- \\
<------------------------------------------------------------------------------------------------------------------> \\
\text{Forte basicité} & \quad \text{Forte nucléophilie} \\
\end{align*}
\]

Comme la réaction $S_{N2}$, la réaction $E2$ est bimoléculaire, i.e. que sa vitesse dépend à la fois de la concentration de la base et de celle de l'électrophile. La température a le même effet que sur les autres réactions et une augmentation de celle-ci donne souvent un surcroît d'élimination. Le nucléofuge joue un rôle important sur le cours de la réaction. L'iode donne plus d'élimination que le brome et que le chlore avec des ratios relatifs d'environ 400 : 60 : 1. C'est pour cela que les iodures sont moins utilisés dans les réactions de substitution. On peut comprendre cet effet en pensant que l'iode étant un meilleur groupe partant, le proton adjacent devient un acide plus fort. L'acidité du proton est donc importante aussi. Par exemple, un substrat ayant un proton relativement acide donnera beaucoup, voir même exclusivement, d'élimination.

\[
\begin{align*}
\text{Br} & \quad \text{EtONa} \\
\text{EtOH} & <1\% \quad >99\% \\
\end{align*}
\]

Dans la prochaine section, nous verrons plusieurs exemples de chacun des facteurs dont nous avons parlé jusqu'ici. Ces facteurs n'agissent jamais seuls. Chacun affecte la réaction différemment mais le
chimiste ne voit que le résultat global de tous ces effets. C'est pourquoi la prédiction de ratio de produits ou de mécanisme de réaction est presque toujours difficile. Il est plus facile d'expliquer les différences entre deux résultats selon les variations des conditions de réaction.

1.5 Problèmes dans le Clayden

Chap 17 : 1, 2, 3, 4, 5, 6, 7*, 9, 10, 11*, 12* (* important)

Ce chapitre traite des différents types de substitutions nucléophiles qui sont utiles en synthèse organique. Le nucléophile (Nu) est essentiellement une base de Lewis capable de donner des électrons. Pour la réaction $S_N1$, la réactivité du Nu n'est pas un facteur décisif et plusieurs nucléophiles, même faibles, vont réagir avec le carbocation. La réaction $S_N2$, elle, requiert un Nu fort puisque celui-ci attaque un carbone non-chargé et participe à l'éjection du nucléofuge. Par contre, les deux types de réaction nécessitent de bons groupes partants.

Il y a un grand nombre de combinaisons possibles de Nu et nucléofuge mais cela ne veut pas dire que toutes les réactions sont utiles d'un point de vue synthétique. Certaines ne procèdent pas à une vitesse acceptable, d'autres ne donnent pas de bons rendements ou donnent lieu à de multiples réactions secondaires. Par exemple, un nucléofuge peut nécessiter des conditions acides pour réagir et ces conditions peuvent être destructives pour le reste de la molécule. C'est souvent le cas des groupements hydroxyles qui ne sont pas de bons groupes partants sauf en conditions acides. Nous allons donc étudier les combinaisons Nu-nucléofuge utiles en synthèse.

2.1 Les électrophiles: préparation des halogénures d'alkylyes.

Les halogénures d'alkyles sont très utiles en synthèse organique. Ils jouent le double rôle de nucléophile et de nucléofuge. Ils jouent en quelque sorte le rôle "d'activateur" de certaines fonctions comme le groupement hydroxyle. Ce dernier est un mauvais nucléofuge (sauf s'il est protoné) et sa transformation en halogénure avant d'effectuer une réaction de substitution est désirable. La préparation d'halogénures d'alkyles est donc souvent faite à partir des alcéols correspondants, bien qu'il soit possible de les fabriquer à partir d'alcanes par réaction radicalaire. Par exemple, la photolyse du toluène en présence de chlore ou de brome fonctionne pour donner l'α-halogénotosulène correspondant.

Seuls les hydrogènes allyliques, benzyléiques, ou activés de façon similaire réagissent chimiosélectivement. Les autres donnent des mélanges ou ne réagissent pas.
Les composés carbonylés sont facilement halogénés. Il suffit de les mélanger avec du chlore gazeux ou du brome pour qu'une réaction instantanée prenne place. Les cas plus difficiles peuvent se faire en ajoutant une quantité catalytique de base ou d’un acide de Lewis dans le but de faciliter la formation de l’énoyl ou l’énoiole et d’en augmenter la concentration. D’autres réactifs comme le chlorure de thionyle peuvent être utilisé comme source de Cl\(^+\). Le schéma suivant donne quelques exemples.

La forme énoyl ou l’énoiole (dépendamment des conditions de réaction) est presque toujours impliqué. La catalyse acide ou basique sert à augmenter la concentration en énoyl (ou énoiole) du composé carbonylé.)
Le traitement d'alcools avec un acide halohydrique donne l'halogénure d'alkyle correspondant par substitution de l'eau. L'acide le plus fort donne souvent les meilleurs résultats puisque la vitesse de la réaction est proportionnelle à la concentration d'alcool protoné (ce dernier est le nucléofuge). L'eau est un excellent groupe partant (ne pas confondre avec HO⁻) et la réaction avec les alcools primaires et secondaires procède via un mécanisme SN₂ tandis que les alcools tertiaires réagissent selon un mécanisme SN₁. Les rendements avec l'acide bromhydrique sont élevés puisque l'acide est fort et la protonation de l'alcool est favorisée. L'acide chlorhydrique donne des rendements plus faibles car l'acide est moins fort.

Cette méthode a le désavantage de nécessiter l'utilisation d'acides concentrés et peu de molécules sont stables dans de telles conditions. La méthode est utilisée principalement pour transformer des alcools simples en halogénures d'alkyle simple. Ces derniers sont utilisés comme substrats lors de synthèse de molécules plus complexes, comme c'est le cas dans la synthèse du tricyclohexyrénol, un précurseur des stérols impliqué dans l'évolution des membranes biologiques. Le cholestérol, par exemple, est essentiel à l'intégrité des membranes de plusieurs cellules animales.
Pour préparer les chlorures on utilise donc plus souvent le chlorure de thionyle (SOCl₂) et les composés halophosphoriques comme le PCl₃ et le PCl₅. D'ailleurs, le PBr₃ et PI₃ donnent aussi de bons rendements en bromure et en iodure correspondant avec l'avantage d'être moins acides que l'acide bromhydrique ou iodhydrique et donc moins réactifs vis-à-vis d'autres groupements fonctionnels dans la molécule. Une synthèse de l’élemol, un monoterpené constituant de plusieurs huiles essentielles d’arbre Australien et de la région du Golf du Mexique, utilise la double transformation d’alcool en bromure avec du PBr₃. Cependant, comme on peut le voir, la réaction génère tout de même 1 équivalent d'acide halohydrique correspondant qui peut nuire dans le cas de composés très sensibles aux acides.
Pour contrer ce problème, on utilise des réactions de type Mitsunobu (du nom de son inventeur japonais). Dans cette réaction, une phosphine (souvent la triphénylphosphine) est activée par un électrophile (souvent CBr₄, phosgène, hexachloroacétone). Le phosphore est capable de faire jusqu’à cinq liens grâce à ses orbitales ‘d’ vacantes. L’alcool vient donc attaquer l’intermédiaire phosphonium et déplace l’halogénure qui vient, à son tour, déplacer l’oxyde de triphénylphosphine par un mécanisme Sₙ2. La force motrice est la formation du lien P-O qui est un lien fort. Les alcools tertiaires ne réagissent pas dans cette réaction. Remarquez que la stéréochimie d’un alcool secondaire chiral sera nécessairement inversée dû au mécanisme Sₙ2.
Ces conditions sont très souvent utilisées en synthèse organique parce qu’elles sont douces. Par exemple, dans leur synthèse de (-)-dendroprimine, Katsumara et ses collaborateurs ont réduit un alcool en groupement méthyle via le bromure, qui est un meilleur groupement partant (pour la réduction elle-même, voir section 2.7). Les conditions douces de Mitsunobu permettent la formation du bromure en présence d’autres groupements sensibles comme un éther silylé et un carbamate.

La transformation d’un alcool allylique (ou propargylique) en halogénure allylique (ou propargylique) soulève la question de régiosélectivité d’attaque ($S_N^2$ Vs $S_N^2'$ ou bien $S_N^1$ Vs $S_N^1'$). Comme discuté au chapitre 1, le degré de substitution sur la double liaison et sur la position allylique détermine la
régiosélectivité. Normalement, le nucléophile (dans ce cas-ci, l’halogénure) attaquera la position la moins encombré. Les deux premiers exemples du schéma suivant le démontrent. Le premier exemple implique certainement un mécanisme \( S_N1' \) tandis que le deuxième implique un mécanisme \( S_N2 \). Cependant, la réaction impliquant le phosphore (réactions de type Mitsunobu) donne presque toujours le produit de \( S_N2 \) même lorsque l’alcool allylique de départ est secondaire. La raison n’est pas bien connue. Peut-être que l’halogénure est livré à partir de l’atome de phosphore.

Les alcools benzyliques sont aussi facilement transformés en chlorures benzyliques en utilisant le chlorure de mésylate (ou tosylate, PhSO₂Cl). Le lycorane (parent de la lycorine, alkaloïde présent dans les bulbes de jonquilles et autres plantes de la famille amaryllis (Amaryllidaceae). La lycorine inhibe la biosynthèse de l’acide ascorbique (vitamine C), la division cellulaire, l’ADN polymérase et la synthèse de protéine).
La transformation des alcools en chlorures avec le chlorure de thionyle procède par un mécanisme $S_{N}1$ ou $S_{N}2$ selon les substrats et les conditions de réaction. Dans la pyridine, on observe une inversion de la
configuration de l'alcool de départ alors que dans l'éther une rétention de la stéréochimie presque complète a lieu. Cela est dû au fait que le départ du dioxyde de soufre est très rapide dans l'éther et que l'ion chlorure n'a pas le temps d'attaquer par mécanisme $S_N2$. Lorsque le dioxyde de soufre est formé, un autre ion chlorure se forme aussi à l'intérieur de la cage de solvant. Cet ion chlorure attaque très rapidement l'ion carbonium sur la face d'où il est issu avant que le carbocation n'ait pu subir une rotation. On dénomme ce mécanisme $S_{N1}$ pour substitution nucléophile interne. La pyridine, par contre, forme un sel avec le HCl libéré créant ainsi un chlorure beaucoup plus nucléophile qui attaque via un mécanisme $S_N2$ et donne de l'inversion.

Dans l'éther

Dans la pyridine

Finalement, une autre façon d'activer le groupement hydroxyle est de le transformer en sulfonate à partir de chlorure de sulfonyl. Une base faible comme la triéthylamine est ajoutée pour piéger l'acide chlorhydrique formé. Les sulfonates peuvent aussi servir de groupes partants ou être transformés en chlorures, bromures ou iodures d'alkyles par l'action du sel de sodium correspondant dans l'acétone. Cette dernière réaction se nomme la réaction de Finkelstein. Les sulfonates les plus utilisés sont le p-toluène sulfonate (groupement tosyle) et le méthane sulfonate (groupement mésyle).
2.2 Addition des composés oxygénés

2.2.1 Addition de l'eau: préparation d'alcools

La substitution d'un groupe partant par l'eau pour préparer des alcools n'est pas une méthode très utilisée. La plupart du temps c'est l'inverse qui est fait i.e. que les halogénures d'alkyles et d'autres groupes partants sont souvent préparés à partir des alcools. Cependant, lorsque le composé halogéné peut être préparé facilement à partir de l'alcane par halogénation radicaulaire (voir section 2.1.1), la substitution de l'eau procure l'alcool correspondant dans de bons rendements. Elle procède lentement avec un mécanisme inverse de celui de la formation d'halogénures à partir d'alcools. Si on utilise un meilleur nucléophile comme l'ion hydroxyle (HO⁻), la vitesse globale de réaction augmente. Cependant, l'ion hydroxyle est plus basique que l'eau et on observe souvent plus de produits secondaires d'élimination. Dans le cas de la substitution d'halogénures tertiaires par l'eau, la réaction suit un mécanisme SN1 et les réactions secondaires d'élimination ainsi que les réarrangements peuvent aussi survenir. Plus le substrat est encombré, plus il donnera lieu à l'élimination puisque le proton est beaucoup plus petit que le carbone électrophile et donc moins sensible aux effets stériques. De plus, si le nucléophile est une base forte, comme l'ion hydroxyle, la réaction d'élimination peut devenir majoritaire.

\[
\text{Cl} + \text{H}_2\text{O} \rightarrow \text{OH} + \text{HCl}
\]
2.2.2 *Addition des alcools: préparation d'éthers*

On peut préparer des éthers de façon analogue à la préparation d'alcools en utilisant les alcools plutôt que l'eau comme nucléophiles. La réaction se produit normalement en conditions neutres avec des rendements acceptables. Dans certains cas, l'utilisation des alcoolates, plus nucléophiles, est requise pour de meilleurs rendements. Les alcoolates sont généralement préparés à partir des alcools et d'un métal comme le sodium, le lithium ou le potassium ou à partir d'une base forte comme les hydrures de sodium, lithium, ou potassium. La substitution nucléophile des alcoolates sur les halogénures est essentiellement irréversible et est appelée la synthèse de *Williamson*. Remarquez que l'on peut préparer des époxydes de cette façon lorsque l'alcool nucléophile est présent à la position adjacente à l'halogénure.

La version intramoléculaire de cette réaction conduit à la formation des cycles à trois, cinq ou six membres. La formation de cycles à quatre membres est possible mais plus difficile. Notez que la
La formation de l'époxyde dans un cycle à six membres requiert l'orientation axiale des deux groupements attaquant et partant. Cette orientation est nécessaire pour l'attaque antipériplanaire (180°).

L'effet du solvant est marqué sur ces réactions de substitution. La substitution du chlorure de propane par l'éthanoate de sodium procède à 60% dans l'éthanol mais plus rapidement et à 95% dans le DMSO. Comme il a déjà été discuté, le solvant protique retarde l'attaque du nucléophile (ponts hydrogène) tandis que le DMSO l'accélère par chélation du contre-ion, ici le sodium, laissant l'éthanoate moins solvaté donc plus réactif.

Les produits d'élimination peuvent devenir majoritaires si le nucléophile est aussi une base forte. Les substrats primaires et secondaires donnent de bons rendements de substitution, mais les électrophiles tertiaires encombrés conduisent aux produits d'élimination. De même, si le nucléophile est lui-même encombré, il y aura plus d'élimination. Ceci s'explique par la grosseur du carbone électrophile à comparer à celle du proton.

Les éthers (R-O-R) subissent rarement la réaction de substitution. Les époxydes sont une exception et ils sont sujets à l'ouverture par un nucléophile oxygéné. Les époxydes, comme les cyclopropanes, possèdent une tension de cycle élevée ce qui les rend beaucoup plus réactifs que les éthers normaux. L'ouverture en milieu basique passe par un mécanisme SN2 et le nucléophile attaquera donc le carbone le moins encombré. La stéréochimie de l'époxyde sera alors inversée.

L'ouverture des époxydes sur les cyclohexanes se fait de la même façon que leur formation, c'est-à-dire que le nucléophile et l'alcoolate résultants doivent se retrouver dans la position axiale immédiatement après l'attaque. Le cyclohexane peut par la suite changer de conformation. L'attaque sur un époxyde...
dont la conformation est figée est donc dirigée vers un seul des deux carbones possibles, celui qui donnera lieu à l’ouverture diaxiale.

L'ouverture est aussi possible en milieu acide. Le mécanisme de la réaction est probablement $S_N2$ dans la plupart de ces cas puisque la stéréochimie de l'époxyde est inversée. Cependant, la régiochimie correspond à l'attaque sur le carbone le plus substitué, c'est à dire celui capable de stabiliser le mieux une charge positive, réminiscent d'un mécanisme $S_N1$. La réalité est probablement un mécanisme $S_N2$ avec un lien C-O très allongé du côté du carbone le plus substitué ou le plus apte à porter une charge partielle positive.

Les époxydes sont aussi sujets à l'ouverture par un alcoolate (milieu basique) ou un alcool (milieu acide). Le mécanisme d'ouverture est identique à celui discuté à la section 2.2.1. Notez donc la complémentarité des méthodes (acide ou basique) pour fabriquer les deux régioisomères suivants.
Les éthers sont préparés chimiosélectivement par la réaction de Williamson. Lorsque deux alcools d'acidités différentes sont traités avec une base, le plus acide des deux forme l'alcoolate et devient par le fait même meilleur nucléophile que l'autre. Un exemple est donné avec la morphine transformée sélectivement en codéine.

Apprentissage par problème (APP) 2.1: Vous allez faire la réaction d'étherification suivante au laboratoire. Dans le problème suivant, dessinez les différents produits qui peuvent être formés, prédissez celui qui est formé majoritairement et expliquez sa formation.

2.2.3 Addition des carboxylates: préparation d'esters

Les esters sont généralement fabriqués à partir de l'acylation d'un alcool, i.e. la réaction de ce dernier avec le carbonyle approprié. Une façon complémentaire de les fabriquer est de faire réagir l'anion carboxylate avec un halogénure d'alkyle. La réaction requiert habituellement un solvant très polaire aprotique comme le DMF et des températures élevées. Le diméthyle sulfate, l'iode de méthyle, et le triméthylxonium de trifluoroborate sont des agents méthylants très puissants qui réagissent avec les ions carboxylates.
Le diazométhane est un agent méthylant tout aussi puissant qui fonctionne en milieu neutre. En présence d'un acide carboxylique, le diazométhane est protoné et l'azote devient le nucléofuge, l'un des meilleurs que l'on connaisse.
**COMPRENDS-TU SANS DESSIN ?**

e) Dessinez en 3-D l’attaque du méthanoate de sodium sur l’époxyde suivant.

\[ \begin{array}{c}
\text{Me} \\
\text{O} \\
\text{Me}
\end{array} \rightleftharpoons \rightleftharpoons \begin{array}{c}
\text{Me} \\
\text{O} \\
\text{Me}
\end{array} \]

f) Sur ce même dessin, dessinez en 3-D l’autre régiochimie d’attaque et expliquez pourquoi elle ne se produit pas.

g) L’azote hybridé sp³ inverse facilement sa configuration à 25 °C. Dessinez en 3-D les deux configurations de l’azote si possible pour chaque molécule suivante.

\[ \begin{array}{c}
\text{Et} \\
\text{N} \\
\text{Ph}
\end{array} \quad \begin{array}{c}
\text{Me} \\
\text{N} \\
\text{Me}
\end{array} \quad \begin{array}{c}
\text{Me} \\
\text{N}
\end{array} \]

h) Il est difficile en regardant cette molécule de savoir si elle possède un axe C₂ de symétrie. Dessinez-là en conformation zig-zag 2-D et dites-moi si oui ou non elle possède un axe C₂ de symétrie.
2.3 Addition des composés soufrés

Les thiols et les thiolates sont de très bons nucléophiles et leurs réactions de substitution fonctionnent généralement bien. Le mécanisme de réaction est identique à celui de la synthèse de Williamson avec les alcools et les alcoolates. On obtient ainsi des thiols ou des thioesters. Vu la faible basicité du soufre, il est très rare de trouver des produits secondaires d'élimination. Les produits de réarrangement, par contre, peuvent être présents.

\[
\begin{align*}
\text{Br-} & \quad \text{Br} \\
\text{Br} & \quad \text{Br} \\
& \quad \text{Br} \\
& \quad \text{Br}
\end{align*}
\]

1) Na\(_2\)S (excès)  
2) H\(_3\)O\(^+\)

\[
\begin{align*}
\text{Br-} & \quad \text{Br} \\
\text{Br} & \quad \text{Br} \\
& \quad \text{Br} \\
& \quad \text{Br}
\end{align*}
\]

NaOEt / EtOH  
CH\(_3\)SH

Contrairement aux analogues oxygénés, les thioéthers (sulfures) sont de bons nucléophiles eux-mêmes. Sous certaines conditions, ils peuvent substituer une fonction halogène. Cette réaction donne des espèces chargées appelées ions sulfonium. Bien sûr, les ions thiolates sont des meilleurs nucléophiles parce qu'ils sont plus réactifs que les thiols ou les sulfures. Tout de même, l'alkylation des sulfures est rapide et très souvent complète.

\[
\begin{align*}
\text{CH}_3\text{SCH}_3 & \quad \text{CH}_3-I
\end{align*}
\]

En revanche, les ions sulfonium sont eux-mêmes de très bons agents alkylants puisque le soufre est devenu un bon nucléofuge. Un nucléophile peut attaquer un des trois groupements et relâcher un sulfure de dialkyle. Puisqu'il est possible, en théorie, d'effectuer la transformation à partir de l'halogénure d'alkyle directement, il est rare en synthèse, de procéder de cette façon. Cependant, les sels de sulfonium sont très utiles en synthèse pour d'autres types de réactions que nous verrons à la section 4.5.4.

\[
\begin{align*}
\text{CH}_3\text{SCH}_3 & \quad \text{CH}_3\text{I} \\
\text{EtO}^-\text{Na}^+ & \quad \text{CH}_3\text{SCH}_3 & \quad \text{CH}_3\text{SCH}_3 & \quad \text{CH}_3\text{CH}_2\text{OCH}_3
\end{align*}
\]

Ce type de transfert de groupements alkyles est très important en biologie puisque la S-méthyl adénosylméthionine (SAM) est l'agent méthylant biologique de plusieurs systèmes vivants et ceci
implique un ion sulfonium tel que montré. Beaucoup de métabolites secondaires tels les stéroïdes sont méthylés par SAM.

L'oxydation des disulfures en sulfoxydes et sulfones peut être considérée comme une substitution nucléophile. L'attaque du soufre sur le peroxyde d'hydrogène en milieu acide fonctionne bien puisque le peroxyde d'hydrogène, l'eau et les éthers en général sont de meilleures bases que les sulfures. Puisque les sulfures sont plus faciles à oxyder que les sulfoxydes résultants, il est possible d'arrêter la réaction en contrôlant la stoechiométrie des réactifs et les conditions de réaction.

2.4 Addition des composés azotés: préparation d'amines
L'ammoniac et les amines primaires ou secondaires réagissent avec les halogénures d'alkyles pour donner des amines primaires, secondaires et tertiaires respectivement. On doit utiliser un excès d'ammoniac pour empêcher la formation d'un mélange d'amines primaires, secondaires, et même tertiaires puisque chaque produit formé est à son tour un nucléophile. Un équivalent d'amine est protoné par l'acide qui est libéré dans la réaction. Généralement, les amines secondaires sont les plus nucléophiles suivies des amines primaires et de l'ammoniac du à l'effet donneur des alkyles. Les amines tertiaires sont moins nucléophiles que l'ammoniac à cause de l'effet stérique.

\[
2 \times \text{NH}_3 + \text{H}_3\text{C} \text{Cl} \rightarrow \text{H}_3\text{C} \text{NH}_2 + \text{NH}_4\text{Cl}^-
\]

\[
\text{H}_3\text{C} \text{NH}_2 + \text{H}_3\text{C} \text{Cl} + \text{NH}_3 \rightarrow (\text{H}_3\text{C})_2 \text{NH} + \text{NH}_4\text{Cl}^-
\]

\[
(\text{H}_3\text{C})_2 \text{NH} + \text{H}_3\text{C} \text{Cl} + \text{NH}_3 \rightarrow (\text{H}_3\text{C})_3 \text{N} + \text{NH}_4\text{Cl}^-
\]

Les amines secondaires ou tertiaires peuvent être sélectivement préparées en contrôlant les concentrations et les conditions de réaction et en utilisant une base externe (e.g.NaHCO₃, K₂CO₃) pour enlever l'acide qui se forme. Cependant, il est beaucoup plus efficace de préparer ces amines en utilisant la base conjuguée de l'amine. Les amines primaires peuvent aussi être préparées à partir de l'amidure de métal. Cependant, les réactions de substitution à partir des amidures de métal sont souvent accompagnées de réactions secondaires d'élimination à cause du caractère basique prononcé des amidures.

Les hydrazines sont aussi de très bons nucléophiles. Puisque les deux azotes peuvent être alkylés, la stoechiométrie et les conditions de réaction doivent être bien contrôlées. Si plus d'un équivalent d'agent alkylant est utilisé, un des azotes est alkylé deux fois avant même que l'autre ne réagisse. Ceci est dû à la nucléophilie accrue de l'azote mono-alkylé grâce à l'effet inductif donneur de l'alkyle.
La fabrication d'amines primaires par la méthode de Gabriel s'effectue très efficacement sans trace d'amines secondaires ou tertiaires. Cette stratégie utilise l'anion du phthalimide dans le DMF. L'anion phthalimide est un bon nucléophile mais ne peut que substituer une seule fois les halogénures d'alkyles. L'amide obtenu est ensuite hydrolysé en amine primaire.

Les amines possèdent un caractère basique prononcé. Ceci résulte donc en un pourcentage élevé d'élimination lors des réactions de substitution. Certains chimistes ont mis au point des nucléophiles azotés beaucoup moins basiques dans le but de diminuer ces réactions secondaires. Par exemple, l'ion azoture est très nucléophile mais peu basique. Les azotures de bas poids moléculaire sont explosifs et doivent donc être manipulés avec précautions. Il suffit de réduire l'azoture d'alkyle résultant pour obtenir l'amine primaire.
La réaction de l'isocyanate de sodium est une méthode efficace pour former des amines secondaires sélectivement. Ce nucléophile réagit rapidement avec les halogénures d'alkyles pour donner un isocyanate d'alkyle qui subit une réduction avec un hydrure pour conduire aux N-méthylalkylamines.

$L'\text{utilisation de l'isocyanate de sodium est une méthode efficace pour former des amines secondaires sélectivement. Ce nucléophile réagit rapidement avec les halogénures d'alkyles pour donner un isocyanate d'alkyle qui subit une réduction avec un hydrure pour conduire aux N-méthylalkylamines.}$
De façon similaire aux dérivés du soufre, il est possible d'alkyler les amines tertiaires pour en faire des sels d'ammonium quaternaires. Ces composés sont des solides stables pour la plupart mais peuvent participer comme groupements partants dans des réactions d'élimination. Nous étudierons ces réactions en détails en Chimie Organique III.

Les sels d'ammonium quaternaires sont d'importants intermédiaires dans les systèmes biologiques. L'acétylcholine, par exemple, est un neurotransmetteur. D'autres sont de puissants inhibiteurs de transmission neuronal ou des relaxants musculaires, comme la tubocurarine (le curare) isolée du chondodendron. Elle est responsable de l'effet hautement toxique des flèches empoisonnées qu'utilisent certaines tribus indiennes de la région amazonienne. Le dibromure de décaméthonium est un relaxant musculaire non-naturel utilisé en médecine. Ces ions ammonium sont séparés par la même distance que les ions ammonium de la tubocurarine.
2.5 Addition des composés phosphorés

Les phosphines et les phosphites sont d'excellents nucléophiles avec une réactivité comparable à celle des iodures et des bromures. Le phosphore n'est pas basique et les réactions de compétition sont très rares. Les aryl- et alkylphosphines ainsi que les arylphosphites donnent des sels de phosphonium qui sont utiles dans la réaction de Wittig que nous allons étudiée au chapitre 6.

L'alkylation des trialkylphosphites, par contre, donne lieu à la formation de phophonates plutôt que de sels de phosphonium. Ceci est dû à la force du lien double P=O dont la formation suit la réaction de l'halogénure libéré avec le groupement alcoxy sur le phosphore. Cette réaction est appelée la réaction d'Arbuzov. Les arylphosphites ne peuvent pas subir cette réaction car une substitution SN2 sur un aromatique n'est pas possible.
2.6 Effet anchimérique

Nous avons souvent discuté de l'accélération entropique des réactions intramoléculaires. Certains substrats peuvent bénéficier de l'aide intramoléculaire d'un groupement voisin qui agit comme nucléophile et nucléofuge. On parle alors d'*assistance anchimérique* ou de *participation du groupe voisin*. Le résultat est une accélération de la vitesse globale de la réaction de substitution ainsi qu'une stéréosélectivité particulière. Par exemple, le 1-chloropentane s'hydrolyse 1000 fois moins rapidement que le 1-chloro-3-thiapentane. Le soufre est trop loin pour exercer un effet inductif quelconque. Le soufre agit donc comme un nucléophile interne provoquant la formation d'un sel de sulfonium cyclique à 3 membres. Cette cyclisation est beaucoup plus rapide (cinétique) que l'hydrolyse du chlore par l'eau. Cependant, le sel de sulfonium est un très bon nucléofuge et la réaction avec l'eau relâche la tension de cycle. La réaction s'en trouve donc accélérée.
L'étude de la stéréochimie procure aussi une évidence pour ce genre de phénomène. Par exemple, l'acide (R)-2-bromopropanoïque subit une hydrolyse pour donner le (R)-2-lactate de sodium. Ceci est l'équivalent d'une réaction S_N2 avec rétention complète de la stéréochimie. Un mécanisme S_N1 aurait donné de la racémisation. On ne peut que conclure que le carboxylate déplace le bromure par un mécanisme S_N2 et l'intermédiaire époxyde se fait à son tour déplacé par l'ion hydroxyle. De même, le 3-chloro-2-butanol otiquement pur est hydrolysé pour donner le composé méso, optiquement inactif. Ceci montre bien que l'hydrolyse passe d'abord par l'époxyde symétrique qui lui, peut s'ouvrir sur n'importe quel des deux carbones.
2.7 Addition de l'hydrure (H-)

Il est possible de réduire les halogénures d'alkyles ou les sulfonates avec l'hydrure d'aluminium et de lithium (LiAlH₄). La réaction procède par un mécanisme S_N2. On peut aussi introduire un deutérium si on utilise le LiAlD₄. Les époxydes sont aussi de bons substrats pour donner les alcools correspondants. Bien sûr d'autres fonctions réductibles telles que les carbonyles, les cyanures, les azotures, etc. ne doivent pas être présentes dans la molécule puisque LiAlH₄ est puissant et il les réduira. Le NaBH₄ peut être utilisé dans ces cas, mais ce dernier est beaucoup moins réactif et ne fonctionne qu'avec les halogénures benzyliques ou en α d'un groupement électro-attracteur comme un nitrile, un ester etc. Enfin, le triéthylborohydrure de lithium est un excellent nucléophile qui réduira les halogénures d'alkyles et les sulfonates efficacement. On le nomme le 'super hydride'.
Rappelez-vous la réduction du bromure lors de la synthèse de le (-)-dendroprimine. Le bromure fut fabriqué par la réaction de Mitsunobu à partir de l'alcool correspondant. La réduction a été complétée en utilisant le borohydrure de sodium dans le DMSO. Le LiAlH₄ ne peut être utilisé ici parce qu’il réduirait le carbamate (O-C(O)-N) aussi.
Les époxydes peuvent aussi être réduits par réaction avec le LiAlH₄ ou le super hydride. La plupart du temps, la régiochimie de la réduction correspond à l'attaque du côté le moins encombré (i.e. souvent le côté le moins substitué) de l'époxyde. Par exemple, l'oxyde de propylène est réduit en alcool isopropylique par le LiAlH₄.

```
\[
\begin{align*}
\text{O} & \quad \text{a) LiAlH}_4 \\
\text{Et}_2\text{O} & \quad \text{Et}_2\text{O} \\
\text{b) H}_3\text{O}^+ & \quad \text{H}_3\text{O}^+
\end{align*}
\]
```

### 2.8 Addition du cyanure (NC⁻)

La substitution des halogénures d'alkyles par le cyanure constitue une méthode pour l'extension d'une chaîne de carbone par une unité équivalente à l'acide carboxylique. Le cyanure est un nucléophile de réactivité similaire à celle de l'iode. La réaction procède généralement par mécanisme S_N2, donc plus facilement sur des substrats 1° et 2°. Le cyanure de potassium ou de sodium sont les plus communs. Ceux-ci sont très insolubles dans la plupart des solvants organiques sauf le DMSO et certains alcools. Les alcanes et autres produits organiques n'étant pas solubles dans l'eau, cette réaction de substitution s'est avérée problématique jusqu'à l'invention des réactions avec transfert de phase. Nous avons décrit en détails cette technique avec les cyanures à la section 2.3.6.
2.9 Addition des composés organométalliques (R₃C⁻) (Clayden chapitre 9, p. 211-218)

La formation de liens carbone-carbone est une des tâches les plus importantes en synthèse de produits naturels. En effet, les squelettes des produits organiques sont formés principalement d’atomes de carbone. De plus, le carbone est peut-être chiral ce qui rajoute une difficulté à la synthèse des produits organiques. Les réactions d’addition d’organométalliques sur les carbonyles sont parmi les plus utilisées en synthèse de produits naturels. La variété de métaux disponibles et les différentes propriétés qu’ils imposent au carbone sur lequel ils sont liés font en sorte que chaque type d’organométallique possède une réactivité particulière qui nous permettra d’effectuer des réactions de façon chimiosélective. C’est à dire que certains organométalliques préféreront réagir avec certains types de carbonyles ou analogues. Voyons d’abord comment on fabrique les organométalliques.

2.9.1 Formation d'organométalliques (Clayden chapitre 9)

La plupart des liens carbone-métal sont très polarisés avec une charge partielle négative sur le carbone parce que le carbone est souvent plus électronégatif. Le degré de caractère ionique du lien peut être estimé par la différence d'électronégativité. Par exemple, la table suivante nous donne une indication du caractère ionique des liens C-M les plus communs.

<table>
<thead>
<tr>
<th>Lien carbone-métal</th>
<th>Différence d'électronégativité</th>
<th>Caractère ionique</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-K</td>
<td>1.8</td>
<td>51%</td>
</tr>
<tr>
<td>C-Na</td>
<td>1.7</td>
<td>47%</td>
</tr>
<tr>
<td>C-Li</td>
<td>1.6</td>
<td>43%</td>
</tr>
</tbody>
</table>
Plus le caractère ionique est grand, plus la réactivité est grande. Cependant, la différence de réactivité peut aussi dépendre de la dureté ou de la molesse relative des organométalliques. Les organométalliques les plus utilisés, et par conséquent utiles, sont les organolithiens et magnésiens. Ils sont faciles à préparer mais doivent l’être dans des conditions totalement anhydres. Pour ce faire, les solvants de réaction sont séchés à l’aide d’absorbants ou de réactifs tel le sodium métallique ou l’aluminohydrure de lithium. Dans la grande majorité des cas, on prépare l’organométallique à partir de l’halogénure d’alkyle et le métal(0) car les alcanes et les alcènes ne possèdent pas d’hydrogène suffisamment acide pour réagir avec une base. Les seules exceptions sont les alcynes terminaux dont le proton est acide (pKa ~ 20).

Le mécanisme de formation de l’espèce organométallique est radicalaire avec deux équivalents d’un métal monovalent (Li, Na, K) ou un équivalent d’un métal divalent (Mg, Zn). Les cuivreux, les cadmiens et les mercuriens sont préparés par échange métal-métal à partir du magnésien ou du lithien correspondant.

Le lithium métallique n’est pas très réactif et les iodures sont utilisés le plus souvent comme produit de départ. Les bromures et les chlorures fonctionnent tout de même mais les fluorures ne sont jamais utilisés car le lien C-F est trop fort et la réaction ne procède pas. Le sodium et le potassium métallique sont beaucoup plus réactifs et leur réaction avec les halogénures est très exothermique. Une fois fabriqués, les organosodiques et les organopotassiques sont beaucoup plus réactifs que les organolithiens et donc moins fréquemment utilisés.
Les réactifs de Grignard (les organomagnésiens) et les organozinciques sont fréquemment utilisés en synthèse organique parce qu’ils sont relativement faciles à préparer et qu’ils ont une réactivité moyenne. Leur synthèse se fait dans le THF ou l’éther anhydride en ajoutant l’iodure, le bromure, ou le chlorure lentement sur des morceaux de magnésium métallique.

Les organocuivreux, organocadmiens, et organomercureux sont normalement préparés à partir des organolithiens ou –magnésiens. La réaction est un déplacement S_N2 sur un sel du métal désiré. Deux équivalents du réactif de Grignard ou de l’organolithien sont requis pour fabriquer les dialkylcuprates et les dialkylcadmiens tandis que les alkylmercures sont fabriqués avec un seul équivalent. Remarquez que le cuivre est chargé négativement dans les dialkycuprates et c’est pourquoi il traîne avec lui le contre-ion lithium ce qui n’est pas le cas du cadmium et du mercure.

Les réactifs de Grignard et autres organométalliques comme les composés du lithium, sodium, potassium, sont très versatiles dans leurs réactions avec les carbonyles. Cependant, leur utilité est plutôt
limitée dans la substitution nucléophile sur des carbones saturés. Le problème réside dans leur grande basicité. Ils promouvoient souvent l'élimination pour donner l'alcène plutôt que le produit de substitution. Une exception est leurs réactions avec les époxydes. Les époxydes sont des électrophiles durs ce qui les rend compatibles avec les organoterreux qui sont, eux, des nucléophiles durs. La réaction produit un alcool.

\[
\text{a) BuMgBr} \quad \text{Et}_2\text{O} \\
\text{b) } \text{H}_3\text{O}^+ \\
\]

Les réactifs de cuprate sont particulièrement adapté à la réaction de substitution car, contrairement aux autres réactifs organométalliques, ils sont très peu basique. La réaction d’ouverture d’époxydes par un réactif de cuprate a été judicieusement utilisé par Jannine Cossy dans une synthèse partielle de la spongistatin 1 (voir introduction au début de la section 1). L’époxyde suivant a réagit à 94% avec l’isopropylnylcuprate pour donner le produit de substitution, l’alcool correspondant.

Spongistatin 1 (althyrtin A)

Apprentissage par problème (APP) 2.2: Comment peut-on utiliser l'oxyde d'éthylène pour alger la chaîne carbonée du 2-bromo-1-phényléthane de 4 carbones pour donner le 6-phényl-1-hexanol? (indice : plus d’une étape).
Contrairement aux autres réactifs de Grignard, les métaux d'acétylures s'additionnent très bien aux haloalcanes. L'acétylénure est un nucléophile plus mou que ses homologues vinyliques ou alcanes. L'anion acétylure est d'ailleurs plus stable et moins réactif. Cette méthode permet d'longer les chaînes alcanes de deux carbone ou plus. L'acétylène peut servir de 'connecteur' entre deux chaînes carbonées puisqu'il possède deux protons acides. Le proton des alcynes (pKa ~ 15-17) est arraché avec une base forte comme le LDA ou le n-BuLi dans l'éther ou le THF ou encore avec l'amidure de sodium dans l'ammoniac liquide. Les alcynes sont très versatiles et peuvent servir à fabriquer une multitude d'autres groupements fonctionnels. En outre, ils peuvent être réduits en alcènes et hydrolysés en cétones.

Les haloalcanes peuvent être substitués par l'intermédiaire d'organocuprates. La méthode de choix consiste en la fabrication de dialkylcuprates comme nous venons de le voir.

\[
\begin{align*}
\text{H}\equiv\text{H} & \xrightarrow{\text{NaNH}_2} \text{H}\equiv\text{Na} & \xrightarrow{\text{H}_2/\text{Pd/C}} \text{Ph-CH_2-H} \\
\text{n-BuLi/THF} & \xrightarrow{\text{PhCH_2Br}} \text{Li}\equiv\text{Br} & \xrightarrow{\text{C}_5\text{H}_{11}\text{Cl}} \text{Ph-CH_2-CH_2-Br}
\end{align*}
\]
2.10 Problèmes dans le Clayden (chapitre 17)

Chap 17 : 1, 2, 3, 4, 5, 6, 7, 8*, 9, 10, 11*, 12*
(Ce sont les mêmes problèmes que pour le chapitre 5 de vos notes de cours).
(* important)
DEUXIÈME SECTION : LES CARBONYLES


Cependant, les carbonyles sont aussi d’importants intermédiaires synthétiques. Cela veut dire que le groupe fonctionnel carbonyle possède une grande réactivité, aujourd’hui relativement prévisible, et qu’il est donc aisé de transformer le carbonyle en d’autres groupements fonctionnels. Le carbonyle nous permettra même de fabriquer un nouveau lien entre deux carbones (ces liens sont cruciaux car les carbones forment le squelette, la structure de base des produits naturels). Il existe plus d’une douzaine de types de carbonyles. Nous apprendrons à les fabriquer et à les transformer.

![Carbone Struct](image)
3. Préparation des carbonyles

Si le carbonyle est l’une des fonctions réactives les plus utilisées en chimie organique, il est vrai aussi qu’elle est l’une des fonctions pour laquelle il y a le plus de méthodes de préparation. Dans ce chapitre, nous verrons la préparation des carbonyles en général. Donc, ce chapitre sera divisé en méthodes et non par type de carbonyle, comme c’est le cas pour les autres chapitres. Nous verrons l’oxydation des alcools, le clivage oxydatif des doubles liaisons…

3.1 Oxydation des alcools (Clayden chap 24, 637-641)

L’oxydation des alcools est la méthode la plus fréquemment employée pour générer les carbonyles. Les aldéhydes, les cétones et les acides carboxylliques sont les trois types de carbonyles qui peuvent être générés par cette méthode. Les esters, amides, nitriles et autres proviennent de la dérivatisation des acides carboxylliques. Seuls les alcools secondaires et primaires peuvent être oxydés en carbonyle avec les réactifs usuels. Les alcools tertiaires ne possèdent pas d’hydrogène au carbinol et sont inertes aux agents oxydants. Les alcools secondaires donnent toujours une cétone lorsqu’ils sont oxydés. Les alcools primaires, eux, peuvent produire un aldéhyde ou un acide carboxyllique, dépendamment de la méthode et de l’oxydant. Les agents oxydants sont très nombreux et certains d’entre eux sont chimiosélectifs, c’est à dire qu’ils oxydent certains types d’alcools uniquement.

Il est judicieux de diviser cette section par type d’oxydant. Chacun possède des caractéristiques particulières et procède par des mécanismes différents. Cependant, plusieurs réactifs sont utilisés pour la même tâche et ne constituent qu’une des ‘armes’ dans l’arsenal du chimiste de synthèse.
3.1.1 Les oxydants à base de chrome (VI).

Ce sont peut-être les oxydants les plus utilisés en chimie de synthèse. Pourtant, ils sont toxiques et normalement peu chimiosélectifs. Par contre, ils oxyzent presque tous les types d’alcools car la force motrice de la réaction (conversion du Cr(VI) en Cr(IV)) est élevée. Il existe plusieurs conditions d’oxydation différentes qui utilisent le chrome. Le dichromate de sodium (Na$_2$Cr$_2$O$_7$) dans l’acide sulfurique (le réactif de Jones) fonctionne avec tous les alcools qui ne sont pas sensibles aux conditions acides. Les alcools primaires sont oxyzés jusqu’à l’acide carboxylique avec ce réactif.

Nous verrons ce mécanisme en détails puisqu’il est typique des oxydations avec le chrome. L’eau scinde le dichromate en oxyde de chrome CrO$_3$. Notez que les étapes de protonation et déprotonation ne se passent pas nécessairement en même temps. Il est probable, en fait, qu'elles soient tout indépendantes. Je les dessine comme ceci pour sauver de l'espace.
Puis, l'alcool attaque le chrome pour former un ester chromique. L'élimination de l'acide chromeux est l'étape déterminante (la plus lente) de la réaction. C’est-à-dire que l'étape lente détermine la vitesse globale de la réaction. La force motrice de la réaction est le passage du chrome de l’état d’oxydation +6 à l'état d’oxydation +4. Cette réduction du chrome est irréversible (autrement dit, l’étape inverse demanderait trop d’énergie pour se produire) alors que toutes les autres étapes sont réversibles. Notez que l’état d’oxydation (IV) du chrome n’est pas un état stable et il se produit une dismutation qui résulte en la formation d’une ou des espèces Cr(III).
Les alcools qui s’avèrent plus sensibles à l’acide peuvent être oxydés à l’aide du chlorochromate de pyridinium (PCC, de l’anglais : pyridinium chlorochromate) ou le dichromate de pyridinium (PDC, de l’anglais : pyridinium dichromate). Le mécanisme de ces oxydations est très similaire à celui du réactif de Jones avec la seule différence que le milieu réactionnel est très peu acide (le pKa du pyridinium est environ 9). Dans le cas du PCC, le trioxyde de chrome n’est même pas préalablement protoné dans ce milieu, mais la pyridine formée assiste l’attaque sur le trioxyde chrome en faisant un pont hydrogène avec le proton de l’alcool. Ceci rend l’alcool plus nucléophile (la pyridine ne peut pas déprotoner l’alcool complètement car elle n’est pas assez basique).
L’oxydation des alcools primaires en acides carboxyliques requiert deux équivalents de l’agent oxydant, quel qu’il soit. L’aldéhyde est d’abord formé, puis en présence d’eau, ce dernier forme un hydrate. L’hydrate subit l’oxydation de la même manière que l’alcool de départ, et je ne répéterai pas le mécanisme ici. Faites le mécanisme vous-même à partir de l’hydrate. Vous verrez que la présence d’un deuxième hydroxyle (groupement OH) mène directement à l’acide carboxylique.

Est-il possible d’arrêter l’oxydation à l’aldéhyde? Oui. Une façon d’arrêter la réaction à l’aldéhyde est de la faire en absence d’eau. Sans eau, l’hydrate ne peut se former et l’aldéhyde devient alors très difficile à oxyder. Le PDC dans le dichlorométhane sec est une méthode particulièrement adaptée pour cette tâche.

3.1.2 Les oxydants à base d’autres métaux.

Le ruthénium et le manganèse sont aussi d’excellents agents oxydants. Le permanganate de potassium sert principalement à oxyder les alcools primaires et les aldéhydes en acides carboxyliques. Son mécanisme d’action est le même que celui des oxydants à base de chrome à l’exception près que le manganèse passe de l’état d’oxydation +7 à l’état d’oxydation +5. Cependant, vous verrez à la section 3.3. que le manganèse(VII), dans certaines conditions, peut oxyder des alcanes en carbonyles.
Le perruthénate de tétrapropylammonium (TPAP, de l’anglais : tétrapropylammonium perruthenate) possède aussi un métal à l’état d’oxydation +7. Il est très efficace pour oxyder les alcools primaires en aldéhydes ou en acides carboxyliques. Par contre, il offre un grand avantage sur les autres systèmes : le ruthénium est utilisé en quantité catalytique. Le schéma qui suit montre le cycle catalytique de cette réaction d’oxydation. Dans un premier temps, l’alcool primaire est oxydé en aldéhyde par le Ru(VII) qui passe alors à l’état d’oxydation +5. Le mécanisme de cette réaction est identique au mécanisme présenté ci-haut pour le permanganate. Puis l’oxyde de N-méthylmorpholine (NMO, de l’anglais : N-methylmorpholine oxide) réagit avec le Ru (V) selon le mécanisme montré sur le schéma. Le bris du lien N-O (lien faible) lors de la perte du fragment N-méthylmorpholine constitue la force motrice de cette réaction. Le ruthénium est donc réoxydé en Ru(VII) et peut re-entrer le cycle catalytique. En théorie, une molécule de perruthénate peut oxyder toutes les molécules d’alcool. En pratique, on met de 1 à 10% de perruthénate. Notez que le NMO, lui, est utilisé en quantité stoechiométrique et est l’oxydant ultime.
Le ruthénium offre des conditions d’oxydation très douces comme en témoigne l’oxydation de l’alcool I en cétone. Le TPAP-NMO mène à un rendement moyen alors que les autres réactifs à base de chrome ou celui de Swern (voir section 3.1.3) ne conduisent qu’à des produits de décomposition. La cétone a ensuite été transformée en calodendroïde, un membre de la famille de limonoïdes. Ces composés sont des triterpènes dégradés en C\(_{26}\) qui possèdent une certaine activité antinéoplasique et insecticide (anti-apétante).
(les oxydants à base de Cr et autres conduisent à des produits de décomposition)

Apprentissage par problème (APP) 3.1: Les alcools primaires s’oxydent plus rapidement que les alcools secondaires. Utilisez cette information pour proposer une séquence d’étapes pour la formation de la lactone suivante (vous pouvez consulter les sections 2.2 sur la formation d’hémiacétal). Il n’est pas nécessaire de faire le mécanisme pour chaque étape dans la réaction.

3.1.3 *Les oxydants à base de non-métaux.*

Les oxydants à base de métaux sont souvent très réactifs et requièrent des conditions de réaction acides, basiques ou autrement dures. Le perruthénate est peut être une exception à cette règle. C’est pourquoi plusieurs oxydants à base de soufre ou d’halogène (Cl, Br, I) ont été inventés. Les hypochlorites sont les plus répandus et parmi eux, on retrouve principalement l’hypochlorite de sodium NaOCl_{2}. Cet agent oxydant convertit efficacement les aldéhydes en acides carboxyliques. Le phosphate est un tampon pour prévenir un excès d’acidité pendant la réaction et l’alcène est un inhibiteur de radicaux pour prévenir les réactions secondaires causées par la présence de radicaux libres.
Les oxydants à base d’iode deviennent de plus en plus populaires. Les oxydes d’iode sont appelés les **periodinanes** et le plus connu est celui développé par Dess et Martin. Il oxyde les alcools en aldéhydes ou cétones, selon le cas, jamais en acides carboxyliques. Il offre des conditions très douces d’oxydation.
La douceur des conditions de réaction est évidente dans l’exemple suivant. La synthèse de la cytovaricine de D. A. Evans requiert l’oxydation d’un alcool secondaire en cétone en présence d’une multitude d’autres groupements fonctionnels tels que les éthers silylés, les cétals, les cétones α,β-insaturées. De plus, la double liaison en β,γ de la cétone produite ne migre pas pendant la réaction pour donner l’énone α,β qui est beaucoup plus stable.

Oxydation de Moffatt

(Cy=cyclohexyl)

RCH₂OH → H₂PO₄

urée
Oxydation de Swern (Clayden p. 1272)

Les exemples d’oxydation qui utilisent le soufre abondent. En voici quelques-uns. Les alcools primaires sont toujours oxydés en aldéhydes et d’ailleurs, il n’est pas possible d’oxyder les aldéhydes en acides carboxyliques par cette méthode.

La molécule suivante donne un produit secondaire important qui accompagne l’aldéhyde désiré. Ce produit secondaire provient de la sur-oxydation de l’aldéhyde en acide carboxylique suivie d’une
condensation avec l’alcool de départ (consultez la section 3.2.1 sur la formation d’ester). Cependant, les conditions de Swern conduisent seulement à l’aldéhyde puisque l’oxydation à l’acide n’est pas possible.

3.1.4 Oxydation d’alcools allyliques (Clayden p.875)

Les alcools allyliques, propargyliques et benzyliques sont des composés contenant respectivement un groupement hydroxyle en alpha d’une double liaison (allylique), d’une triple liaison (propargylique) ou d’un noyau aromatique (benzylique). Bien que ces alcools soient oxydables avec les mêmes réactifs que nous avons vus précédemment, il est possible de les oxyder chimiosélectivement avec le dioxyde de manganèse. Aucun autre alcool présent dans la molécule ne sera oxydé par le dioxyde de manganèse mais tous les alcools allyliques ou benzyliques seront oxydés. Le mécanisme réactionnel n’est pas bien connu mais il est clair que les électrons π de la double liaison doivent jouer un rôle important puisque les alcools ordinaires ne sont pas normalement oxydés.
3.2 Oxydation avec clivage d’un lien carbone-carbone (Clayden p. 936-939)

Les diols vicinaux se scindent en deux composés carbonylés lorsque traités avec du periodate de sodium (NaIO₄), le permanganate de potassium (KMnO₄) ou le tétraacétate de plomb (Pb(OAc)₄). Le mécanisme dans chaque cas est semblable et implique une élimination *syn* cyclique la plupart du temps. Les premières étapes consistent en la formation d'un intermédiaire periodate ou plombique cyclique.

Apprentissage par problème (APP) 3.2 : Quelle(s) expérience(s) pratique(s) pourriez-vous utiliser pour trancher entre les deux mécanismes proposés ci-dessous?
Le trans-9,10-diènédial n'est pas sensible à l'oxydation au periodate et subit un clivage athermique avec l'acétate de plomb beaucoup mais plus lentement que le cis-9,10-diènédial. Cela démontre bien que l'étape d'élimination passe par un intermédiaire cyclique. Dans le cas du plomb, l'élimination peut se faire sans l'implication de l'intermédiaire cyclique mais comme l'élimination requiert alors une base (probablement l'acétate), la réaction est plus lente.

L'acide periodique coupe également les dicétones en acides carboxyliques. Cependant, les expériences de marquage à l'oxygène 18 montrent que les deux nouveaux atomes d'oxygène proviennent du periodate comme le suggère le mécanisme suivant.
Il est possible d'obtenir un diol directement à partir de la dihydroxylation d'un alcène en utilisant des oxydes de métaux comme le permanganate de potassium \(\text{KMnO}_4\), le tétraoxyde d'osmium \(\text{OsO}_4\) ou le perruthénate \(\text{RuO}_4\).

Le tétraoxyde d'osmium est le réactif le plus utilisé pour cette transformation. Le ruthénium coûte cher, par contre, l'osmium est très toxique. Il est très doux, très sélectif pour les alcènes et il agit de façon stéréospécifique. Dans la réaction suivante (en haut du schéma), par exemple, les deux groupements hydroxyles se retrouvent sur la même face de la molécule dû au mécanisme d'addition tel que montré dans le schéma précédent. Notez que le produit est racémique car le réactif est incapable de différencier les deux faces de la molécule. La réaction est donc stéréospécifique mais non-stéréosélective. La réaction en bas du schéma est stéréospécifique et stéréosélective puisque les deux faces de la molécule sont différentiables et l’attaque de l’osmium se fait préférentiellement sur l’une d’elles.
Le tétraoxyde d'osmium peut être utilisé en conjonction avec le periodate de sodium pour cliver les alcènes en deux carbonyles, via le diol. En fait, c'est le periodate qui clive le diol en carbonyles selon le mécanisme ci-dessus. Si deux équivalents de periodate sont utilisés, le tétraoxyde d'osmium peut être utilisé en quantité catalytique puisqu'un équivalent de IO₄⁻ servira à réoxyder l'osmium.

L'ozone est fabriqué en faisant passer de l'oxygène sec à travers un arc électrique. Des concentrations allant jusqu'à 4% d'ozone peuvent être produites et l'air prend l'odeur caractéristique des arcs électriques (dû à l'ozone). L'ozone est un agent dipolaire qui additionne très rapidement sur les alcènes pour donner initialement un intermédiaire appelé mojonoide. Celui-ci réarrange en ozonide ou dans certains cas en un ozonide polymérique. Peu importe puisque ces derniers sont rarement isolés mais plutôt transformés directement en produit par l'action de l'eau ou d'agents réducteurs.
L'eau hydrolyse l'ozonide pour former deux carboxyles et une molécule de péroxyde d'hydrogène. Si un aldéhyde est formé, il sera oxydé en acide carboxylique par le peroxyde. Il convient alors d'ajouter un agent réducteur comme le zinc métallique ou de faire un "work-up" en conditions réductrices avec la triphénylphosphine ou le diméthylsulfure ou bien encore l'hydrogène sur catalyseur de palladium. Des alcools peuvent être formés en choisissant le borohydrure de sodium comme agent réducteur.
L'ozone est un réactif très électrophile. Les doubles liaisons les plus riches en électrons vont donc réagir plus rapidement sauf si l'effet stérique vient perturber cet ordre. La réaction est souvent conduite dans le dichlorométhane ou l'éthanol comme solvant à -78°C. Quelques exemples sont fournis.
3.3 Oxydation allylique (pp. 564 et 645)

Certains oxydants puissants, comme le manganèse et le chrome, sont capables d’oxyder des groupements alkyles directement en alcool, en cétone ou en acide carboxylique. Cependant, ces groupements alkyles doivent être en position allylique, propargylique ou benzylique.

Le KMnO₄, l’acide dichromique et l’hypochlorite de sodium, clivent de façon oxydative (clivage oxydatif) les alkyles benzyliques en acides benzoïques correspondant. Les groupements méthyles sont d’abord oxydés en alcool, puis en aldéhyde, et enfin en acide carboxylique. L’aldéhyde n’est pas isolable. Un alkyle plus substitué est d’abord oxydé en alcool, puis en cétone mais celle-ci n’est pas isolable non plus et l’arylalkylcétone est oxydée en acide carboxylique. Il faut comprendre que la première oxydation qui transforme le méthyle ou l’alkyle en alcool benzylique est plus difficile que les oxydations subséquentes. Il est donc logique qu’un oxydant suffisamment puissant pour oxyder une position benzylique, oxyde facilement les intermédiaires alcools et aldéhydes qui sont produits.
Presque toutes les chaînes alkyles peuvent être clivées à l’exception des groupements t-butyliques qui ne sont pas touchés. Si un groupement phényle se trouve en de la position benzylique, alors la diarylcétone est produite et isolée. Le ou les groupements alkyles peuvent faire partie d’un cycle comme dans l’exemple au bas du schéma suivant.

Il est important de noter que du point de vue de la synthèse de produits naturels, il serait illogique d’introduire une chaîne alkyle complexe (par la substitution électrophile aromatique, par exemple, que vous avez vue en chimie organique I) et ensuite de la cliver oxydativement. Il serait plus logique d’introduire un simple méthyle pour cela.
Le mécanisme n’est pas complètement éclairci. Cependant, l’oxydation montre un effet isotopique du deutérium de 6,4 (voir en annexe), ce qui met en évidence soit le radical Ar-CHR· ou encore le cation ArCHR+. Les deux cas expliquent l’effet isotopique et sont en accord avec l’ordre de facilité d’oxydation des alkyles qui est : -CH₂Ar > -CHR₂ > -CH₂R > -CH₃.

### 3.4 Hydrolyse d’alcynes

Les alcynes terminaux conduisent à une méthylcétone lorsqu’ils subissent l’hydrolyse. Bien qu’il soit possible d’hydrolyser un alcyne simplement avec de l’eau et un acide fort, il est préférable d’utiliser un sel de mercure. La réaction se nomme l’oxymercuration des alcynes.
Le mécanisme est décrit ci-dessous. Vous verrez en détails l’oxymercuration des alcènes et des alcynes en chimie organique III. L’attaque de l’eau sur l’ion mercurium se fait là où la charge positive est la plus développée (i.e. sur le carbone le plus substitué).

Apprentissage par problème (APP) 3.3 : Les allènes sont des molécules qui ressemblent aux alcynes en ce sens que le carbone central est lui aussi hybridé sp. Leur oxymercuration mène aussi à une cétone. Proposez un mécanisme pour cette réaction?
4. Additions nucléophiles sur les carbonyles: aldéhydes et cétones (Clayden, chapitre 6)

Les aldéhydes et les cétones sont des carbonyles flanqués de groupements alkyles, aryles ou d’hydrogènes. Les aldéhydes ont toujours un hydrogène (le formaldéhyde en a deux) et un groupement carboné tandis que les cétones ont 2 groupements carbonés.

![Aldéhyde et Cétone](image)

4.1 Réactivité de la fonction carbonyle.

La réactivité du lien C=O peut être comprise en analysant sa polarité. Comme l'oxygène est plus électronégatif, il y a une densité d’électrons plus élevée sur ce dernier. Ceci génère un dipôle permanent dans la direction de l'oxygène. Le lien \( \pi \) est le plus réactif et se compose d'une orbitale liante et d'une orbitale antiliante. L'orbitale liante est riche en électrons sur l'oxygène et réagira avec des électrophiles. L'orbitale antiliante est dépourvue d'électron avec un coefficient plus grand sur le carbone et réagira avec des nucléophiles. Il est donc évident que l'oxygène réagira avec des électrophiles alors que le carbone sera attaqué par des nucléophiles.

4.1.1 Additions électrophiles et nucléophiles.

Le carbonyle peut réagir selon 2 mécanismes différents. C'est à dire que l'addition d'un nucléophile peut précéder l'addition de l'electrophile ou la réaction peut se faire par addition préalable d'un électrophile sur l'atome d'oxygène suivie par l'attaque du nucléophile sur le carbone. Le nucléophile dans le mécanisme 1 devra être plus réactif que son homologue dans le mécanisme 2. L'électrophile dans le mécanisme 2 devra être plus fort que son homologue dans le mécanisme 1. Il est donc possible d'avoir une addition catalysée par une base ou un acide. NOTEZ que la réaction, peu importe son mécanisme, s'appelle "addition nucléophilique sur un carbonyle" puisque la transformation la plus importante est l'addition sur le carbone.
4.1.2 Différence de réactivité entre cétones et aldéhydes.

Plus le carbone sera déficient en électrons, plus le carbonyl sera réactif. Il s'ensuit que les aldéhydes sont plus réactifs que les cétones à cause de l'effet donneur des groupements alkyles. Aussi, les cétones sont plus stériquement encombrées. De plus, après l'addition du nucléophile, l'angle entre les groupements sur le carbone diminue. Donc, l'effet stérique entre eux augmente, et comme cet effet est pire entre deux groupements alkyles qu'entre un alkyle et un hydrogène, le produit d'addition sur les cétones est moins stable (donc la réaction est moins favorisée).

4.2 Addition nucléophile des composés oxygénés et soufrés (chapitre 14)

Apprentissage par problème (APP) 4.1: Si vous vouliez synthétiser le lycorane (parent de la lycorine, alcaloïde présent dans les bulbes de jonquilles et autres plantes de la famille *Amaryllis* (*Amaryllidaceae*). La lycorine inhibe la biosynthèse de l'acide ascorbique (vitamine C), la division cellulaire, l’ADN polymérase et la synthèse de protéine) ou si vous vouliez synthétiser un glycoside (dérivé du glucose, par exemple) alors il vous faudrait savoir fabriquer des cétals ou acétals.
Un cétal et un acétal se composent d’un carbone portant **deux liens simples avec l’oxygène**. Les deux autres liens du carbone d’un acétal **doivent être** avec un hydrogène et un carbone (ou deux hydrogènes), tandis que le carbone d’un cétal **doit être lié** avec deux autres carbones. Tout le reste peut être n’importe quoi. Par exemple, le lycorane et le *O*-méthylglucose possèdent chacun un acétal, le premier portant deux hydrogènes et l’autre un hydrogène et un carbone. Le fait que ce carbone et un des oxygènes de l’acétal soit liés (en rouge), ne change en rien la fonction acétal.

![Diagramme de Lycorane et O-Méthylglucose](image)

Certains composés oxygénés comme les alcools et certains composés soufrés comme les thiols sont autant des acides faibles que des bases et des nucléophiles peu réactifs. En présence d’un aldéhyde ou d’une cétone, ils ne réagiront pas sauf si une trace d’acide ou de base est présente. Nous commençons d’abord avec l’addition d’alcools sur un carbonyle pour donner initialement un hémiacétal puis un acétal dans le cas d’aldéhydes et un hémicétal puis un cétal dans le cas des cétones. Bien que la formation d’un lien sigma carbone-oxygène soit favorable enthalpiquement parlant (énergie des liens), les hémicétals et hémiacétals sont généralement instables et l’équilibre tend vers les produits de départ i.e. les cétones (ou aldéhydes) et alcools. La raison principale est une entropie moins élevée et une meilleure solvatation du système à deux molécules (produits de départ) plutôt qu’une seule molécule (hémicétal ou hémiacétal). La formation de l’acétal final passe par la protonation de la fonction OH sur l’hémiacétal. Le départ de H₂O est favorisé par la présence du groupement donneur alkoxy (OR) qui stabilise le carbocation qui en résulte. Par la suite, une autre molécule d’alcool vient se fixer sur le carbone de l’ion carbonium pour donner, après perte d’un proton, l’acétal désiré. Le mécanisme est identique pour les cétals. Cependant il est rare que l’équilibre penche en faveur des produits finaux (encore une fois pour des raisons d’entropie de réaction) et pour forcer la réaction à se compléter, il faut retirer l’eau du milieu par distillation ou piégeage ou bien encore mettre un large excès de l’alcool ou distiller l’acétal lors de sa formation.

![Diagrames de réactions de formation d’acétals et cétals](image)
La réaction inverse, l'hydrolyse des cétals et acétals, passe par le mécanisme exactement inverse et doit être réalisée en présence d'eau. L'hydrolyse jouit d'un avantage puisque l'équilibre tend naturellement vers les produits carbonylés. Il est donc inutile de retirer l'alcool formé pendant la réaction.

Seuls les hémiacétals ou hémicétals cycliques sont stables grace à l'entropie de réaction qui est plus faible. Les hémicétals à cinq membres sont particulièrement stables et ces molécules existent souvent à plus de 99% sous forme hémiacétal. Ici, au lieu de convertir 2 molécules en 1, on converti 1 molécule en 1 ce qui explique l'entropie plus basse.

Les sucres sont des hémiacétals cycliques stables. Leur réaction avec un alcool en présence d'acide donne lieu à un acétal cyclique (plutôt qu’un acétal acyclique) puisque la formation d'un composé cyclique est généralement favorisée grace à son entropie moins élevée. La formation du composé acyclique, i.e. la formation de l'acétal avec 2 molécules d'alcools est entropiquement défavorisée parce qu'elle converti 3 molécules en 2 (en comptant l’eau formée).
La catalyse basique donne lieu à des hémiacétals ou hémicétals qui ne peuvent pas continuer à réagir pour donner un acétal ou un cétal. Ceci est dû au groupement hydroxyle (OH) qui n’est pas un suffisamment bon groupe partant dans ces conditions et ne permet donc pas la génération de l’ion carbonium nécessaire à la complétion de la réaction. Ceci est aussi vrai pour les cétals et acétals, ceux-ci sont stables en milieu basique, même fort, et ne peuvent donc pas être hydrolysés en milieu basique.

APP 4.1 (suite): maintenant que vous connaissez les cétals et acétals, comment prépareriez-vous la lycorine et le O-méthylglucose (autrement dit, quels sont les précurseurs de ces acétals).
Vous vous rappelez de la synthèse du lycorane par Pearson et son groupe (voir chapitre 2). Leur produit de départ est issu de l’acide protocatéchuïque (un des monomères du tannins, entre autres). La formation de l’acétal se fait avec le formaldéhyde en excès. Le reste de la synthèse est vu au chapitre 5.

![Diagramme de synthèse du lycorane](image.png)
APP 4.2: La brévicomine est une phéromone d’aggrégation de la coquerelle des pins de l’ouest (Western Pine beetle). La coquerelle est un fléau car elle attaque les pins en faisant, pour ses œufs, des galeries qui peuvent atteindre une taille de 90 cm. Il est donc intéressant de pouvoir synthétiser la phéromone qui peut être utilisée comme agent de contrôle de cet insecte. La brévicomine contient elle-même une fonction cétal (pouvez-vous l’identifier?), ce qui veut dire qu’elle pourrait être formée par la cétalisation du céto-diol correspondant. Mais comment la cétone pourra-t-elle survivre à toutes les réactions requises dans la synthèse?

![Image of a beetle]

![Chemical structures]

Brévicomine

Forme céto-diol
COMPRENDS-TU SANS DESSIN ?

i) Montrez l’équilibre en les deux formes chaises du \( O \)-Méthylglucose

j) Dessinez une autre conformation de la brévicomine. Tournez-là ensuite de +120 ° sur l’axe ‘z’.
   Puis amusez-vous à la tourner de d’autres façons.

k) Dessinez en 3 dimensions le lycorane.

l) Dessinez la forme céital du diol suivant. Montrez la conformation la plus stable où chaque oxygène est axial par rapport à l’autre cycle.

m) Dessinez l’autre forme chaise-chaise du même céital (i.e. le flip-flop).

\[
\begin{align*}
&\text{HO} \\
&\text{O} \\
&\text{HO} \\
\end{align*}
\]
Puisque les cétals et acétals sont stables en milieu basique, même fort, mais qu’ils sont hydrolysables en milieu acide aqueux, il est parfois utile d’utiliser l’acétal ou le céta l comme groupement protecteur temporaire d’un aldéhyde, d’une cétone, ou même d’un alcool (ou diol) qui pourrait réagir en milieu fortement basique ou nucléophile durant une séquence synthétique. En fait, les cétals et acétals sont surtout utilisés comme groupement protecteur en synthèse organique puisque les fonctions carboneyle et alcool sont parmi les plus réactives. L’acétal représente une forme masquée, protégée des fonctions carboneyle et alcool.

La synthèse de la brévicomine débute avec l’acétoacétate d’éthyle commercialement disponible. Le produit de départ est alkylé et décarboxylé (chapitre 3). La fonction cétone ne résistera pas à la réaction de Wittig (section 4.5.4) que les auteurs ont planifiés faire. Donc, il la protège sous forme de céta l cyclique. Cette dernière est stable en milieu fortement basique. Le réactif de Wittig est préparé et la réaction de Wittig donne un mélange d’alcènes cis et trans. Seul le trans est époxydé car la stéréochimie de l’époxyde est importante pour la brévicomine. L’ouverture de l’époxyde (chapitre 6) donne le céto-diol et puisque ce dernier se retrouve en conditions acides, il cyclise spontanément (pourtant il y avait de l’eau dans le milieu, comment se fait-il que le céta l se soit formé quand même? Réponse : il est cyclique! L’équilibre tend vers les produits finaux et il n’y a nul besoin d’enlever l’eau).
APP 4.3 Le tétrahydropyrane est l’un des groupes protecteurs les plus utilisés pour la protection d’alcools normaux. Voici comment on le forme. Écrivez son mécanisme.

Vous venez de voir que les acétals et cétals peuvent aussi être formés à partir d’un éther d’énol. L’éther d’énol est souvent produit à partir d’un carbonyle. Il s’agit donc de la même réaction à toute fin pratique sauf que l’éther d’énol est un intermédiaire. Cependant, cette façon de faire présente deux différences : elle requiert une quantité stoechiométrique de l’acide; il n’y a pas d’eau ou d’alcool produit, donc nul besoin de déplacer l’équilibre en enlevant l’eau.

Ces réactions sont à titre informatif seulement.
Les thiols sont beaucoup plus nucléophiles que leurs homologues oxygénés. Ceci est dû au doublet d'électrons libres qui est moins bien retenu et donc plus disponible. On parle de bases de Lewis **molles** alors que les alcools sont des bases plus **dures** (on étudiera ce concept plus en détails au chapitre 6).

Les acides de Brønsted comme le HCl, de même qu’un acide de Lewis comme le BF₃·Et₂O, peuvent catalyser la formation d'hémithioacétals et de dithioacétals (ou d'hémithiocétals et dithiocétals dans le cas des cétones). Les protons sont des acides durs et normalement les bases molles, comme les thiols, vont préférer les acides de Lewis plus mous. Un carbonyle protoné est plus dur qu'un carbonyle chélaté avec un acide de Lewis. Les dithioacétals et dithiocétals sont stables en milieu basique tout comme leurs homologues oxygénés.

Contrairement aux cétals et acétals, les dithioacétals et dithiocétals peuvent être réduits en alcanes par le nickel de Raney (Ra-Ni). Leur hydrolyse en cétones ou aldéhydes requiert des conditions spéciales avec le mercure ou l'iode de métal mais nous ne verrons pas le mécanisme de ces réactions. Ceci est encore dû au fait que le soufre est une base molle et la protonation des dithioacétals et dithiocétals est lente et difficile.
APP 4.4 Comment expliquez-vous la différence entre ces deux réactions?

Les produits naturels contenant un dithioacétal ou dithiocétal sont plus rares que ceux contenant un acétal ou un cétal. Cependant, les thioacétals sont très utilisés en synthèse organique car ils sont d’excellents groupes protecteurs. Ils ont l’avantage d’être alkylés (section 3.4) et d’être réduits en alcanes. Par exemple, le longifolène (un constituant des huiles essentielles du pin qui est utilisé en parfumerie pour son odeur de ‘bois de pin et de balsam’ et aussi comme plastifiant dans certaines résines synthétiques) est synthétisé à partir d’une réaction de Michael (chapitre 3). Par la suite, un des carbonyles est réduit en alcane via un dithiane. En regardant le longifolène, on s’aperçoit qu’il est dénué
de groupes fonctionnels et qu’il est nécessaire d’en introduire pour sa synthèse (puisque seuls les groupes fonctionnels réagissent). Il faut donc bien se débarrasser de (réduire) ces groupements fonctionnels par la suite. Les dithiocétals sont excellents pour cela.

O

O

O

O

O

BF₃·Et₂O

SH

SH

HS

SH

a) Et₃N, 225 ºC

Éthylène glycol

b) Ph₃CNa

MeI, Et₂O

la cétone la moins encombrée réagit

Longifolène

APP 4.6 Quels avantages pouvons nous tirer du fait que les dithiocétals s’hydrolysent différemment des cétals?
Voici un autre exemple qui montre l’utilisation des cétals et dithiocétals dans la même synthèse. La cible est l’aplasmomycine et puisque la synthèse est très longue, je ne vous en montre qu’une petite portion. Notez les caractéristiques et les différences entre cétals et dithiocétals : l’aldéhyde de départ ne réagit qu’avec les soufres; la formation du cétal ne dérange pas du tout le thiocétal déjà en place (les soufres ne se protonent pas facilement); l’alcool restant peut être manipulé sans danger et ensuite le cétal est enlevé sélectivement (sans enlever le dithiocétal); l’inverse aurait pu se produire, i.e. qu’on aurait pu si on l’avait voulu enlever le dithiocétal sans hydrolyser le cétal.
Antibiotique, inhibiteur de croissance des bactéries Gram-positive, obtenu d'une streptomycette *griseus* isolée des sédiments d'eau peu profonde dans la Baie de Sagami au Japon. L'antibiotique est coordonné à un atome de bore et fonctionne par effet ionophorique, i.e. par transport de cations métalliques à travers les membranes cellulaires.

APP 4.7 Pourquoi la réaction d'acétalisation du diol-1,2 ci-haut n’a pas plutôt produit le cycle à 6-membres en acétalisant le diol-1,3?

APP 4.8 Proposez un mécanisme pour la formation du monothioacétal RO-CH₂-SMe ci-haut en sachant (à partir de) que l’intermédiaire formé est (Me-S=CH₂)⁺
Avez-vous remarqué que la réaction d’acétalisation fait partie du chapitre sur les aldéhydes et cétones et pas du chapitre des acides carboxylique et leurs dérivés. C’est parce que la formation d’acétal sur un acide carboxylique n’est pas possible. Il est facile de voir que le produit de droite est en fait un hémiacétal et qu’il perdra une molécule d’eau pour donner un ester (voir section 3.2.1)

Il est possible de fabriquer des ortho-esters à partir d’esters par une réaction qui s’apparente beaucoup à la réaction d’acétalisation. Les ortho-esters sont beaucoup moins stables à l’acide aqueux que les acétals ou les cétals. On peut imaginer fabriquer des dithio ortho-esters mais ces composés sont rarement utilisés.

4.3 Addition d’hydrures (H⁻) (Clayden chapitre 6, pp. 139-141)

4.3.1 Hydrures métalliques

La réduction des cétones et aldéhydes mène aux alcools secondaires et primaires respectivement. Le bilan est une addition d'une molécule de H₂ sur la double liaison. Cette réaction est un pivot de la synthèse organique puisque les fonctions carbonyles et alcools sont parmi les plus communes dans les produits naturels. De plus, ces deux fonctions sont des intermédiaires synthétiques des plus utiles car non seulement elles se transforment l’une en l’autre (carbonyle en alcool, alcool en carbonyle) mais en une multitude d’autres fonctions.

Cependant, l'utilisation de l'hydrogène moléculaire est moins fréquente car cela requiert un catalyseur métallique avec une pression d'hydrogène. Généralement, on utilise les hydrures métalliques qui sont des sources d'ion hydrure H⁻. L'hydrure peut être soit une base forte ou un nucléophile, dépendamment de l'ion métallique auquel il est associé. Certains hydrures basiques ne réduisent même pas les carbonyles mais réagissent violemment avec l'eau pour donner de l'hydrogène et MOH dans une réaction.
acide-base. C'est le cas des hydrures de lithium, sodium et potassium. Cependant les hydrures de bore et d'aluminium sont fréquemment employés et sont de très bons nucléophiles. Le borohydrure de lithium (LiBH₄) ou de sodium (NaBH₄) sont des réactifs très doux qui ne réduisent efficacement que les cétones et aldéhydes mais qui sont des bases très faibles. On peut les utiliser dans du méthanol ou de l'eau puisque la réaction acide-base est lente. L'eau à pH 3 ou moins réagira avec ces hydrures pour donner H₂ et l'acide borique B(OH)₃. L'aluminoxydrure de lithium (LiAlH₄) est un nucléophile puissant qui réduit toute fonction carbonylë mais qui est aussi une base forte puisqu'il réagit violemment avec l'eau ou avec des acides pour donner H₂ et Al(OH)₃. Le solvant de réduction doit donc être exempt d'humidité ou de toute source d'alcools car la réaction acide-base est plus rapide que l'attaque sur le carbonylë.

Ces hydrures sont des sources de H⁺ car le métal est moins électronégatif que l'hydrogène. L'aluminium étant le moins électronégatif possède le lien M-H le plus faible et le plus polarisé donc le plus réactif. La différence entre la basicité et la nucléophilicité est souvent reliée au caractère mou ou dur de l'acide ou de la base et de l'électrophile ou du nucléophile. Le proton est un des acides les plus durs et les hydrures de lithium, sodium ou potassium sont des bases dures. Le carbonyle est relativement plus mou et préférera réagir avec l'hydrure de bore ou d'aluminium qui sont beaucoup plus mous.

Le mécanisme est identique pour tous les hydrures métalliques et commence par une attaque de l'hydrure sur le carbonylë. Cette attaque peut se produire quatre fois puisqu'il y a quatre ions hydrures autour du métal. Cela donne lieu à une espèce aluminate ou borate qui est stable et reste en solution jusqu'à ce que l'on ajoute de l'acide, le plus souvent du HCl aqueux. Chaque alcoolate se protone et l'eau déplace l'alcool quatre fois jusqu'à production d'acide borique ou d'oxyde d'aluminate selon le cas. (Notez que les réductions par le NaBH₄ dans le méthanol donne lieu à des intermédiaires borates qui se solvolysent immédiatement dans le milieu réactionnel. L'ajout d'acide aqueux facilite l'isolation du produit final mais n'est pas nécessaire pour hydrolyser les borates).
APP 4.9 Voici des exemples de réduction par des hydrures métalliques. L’acide rétigéranique est un triterpène isolé d’un lichen poussant dans les hauteurs de l’Himalaya. À l’époque, son squelette carboné était inhabituel et représentait un défi synthétique. Cet acide à quelques propriétés biologiques et empêche la croissance chez certaines plantes. Le Ginkgolide (Ginkgo biloba (Ginkgoaceae) est un arbre chinois très ancien dont les extraits ont des propriétés neuroprotectrices. Le ginkgolide B, est un antagoniste du facteur d’activation des plaquettes, impliqué dans l’artériosclérose, et active la circulation du sang. C’est pourquoi il est devenu si populaire depuis 15 ans. Plusieurs études ont démontré que le ginkgo biloba protège les vaisseaux sanguins et augmente leur élasticité.
4.3.2 Hydrures provenant d'un lien C-H

Certains liens C-H, sous certaines conditions de réaction, constituent une source d'hydrures capables de réduire un carbonyle. Souvent cette réaction implique la dismutation de deux carbonyles, c'est à dire qu'un des carbonyles est réduit alors que l'autre est oxydé.

4.3.2.a La réduction de Meerwein-Pondorf-Verley

Une cétone et un alcool ou un aldéhyde et un alcool peuvent s'échanger un hydrure sous certaines conditions avec le résultat que l'alcool est oxydé en carboxylique et la cétone est réduite en alcool (ou l'aldéhyde est réduit en alcool). Cependant un catalyseur comme un acide de Lewis est requis pour la réaction. La plupart du temps, le triisopropanate d'aluminium dans l'isopropanol est utilisé comme agent oxydant. En principe, la réaction peut fonctionner avec une quantité catalytique de Al(iPrO)₃ dans l'isopropanol puisqu'un équilibre peut s'établir entre Al(OCHR₁R₂)₃ + 3 iPrO et Al(iPrO)₃ + 3 HOCHR₁R₂. Cependant, cet équilibre est lent et il est souvent plus rapide de mettre 1 équivalent de Al(iPrO)₃ et de traiter ensuite le mélange réactionnel avec de l'acide dans l'eau pour détruire l'excès de réactif et pour hydrolyser l'aluminate en alcool désiré. Cette dernière réaction procède par un mécanisme similaire à celui d'hydrolyse des aluminate ou borates lors de la réduction de carbonyles par les hydrures métalliques.
L'équilibre est déplacé vers ce produit par l'excès d'isopropanol ou par la distillation de l'acétone qui est formée.

Cet équilibre aussi est déplacé vers ce produit par l'excès d'isopropanol ou par la distillation de l'acétone formée.

L'échange entre l'isopropanol et l'alcool désiré encore sur l'aluminium peut être très lent, surtout si l'alcool désiré possède des groupements R₁ et R₂ volumineux. Si c'est le cas, on ajoute de l'acide dans l'eau après que la réduction soit terminée pour accélérer la dernière étape.
4.3.2.2 Réduction biosynthétique

La réduction des carbonyles en biosynthèse ou dans le métabolisme occupe une place centrale dans à peu près tous les cycles biologiques. Plusieurs réducteurs biologiques existent dont le Nicotinamide Adénosyl DiPhosphate ou NADPH et le flavin adénosyl Dinucleotide ou FAD. Ces deux réducteurs sont des co-facteurs à l'intérieur d'un système enzymatique complexe capable de réductions énantiosélectives. Par exemple la réduction de l'acide pyruvique en acide (S)-lactique par le NADPH procède avec 100% de stéréosélectivité.

Nicotinamide adénosine diphosphate (NADPH)
4.4 Addition des nucléophiles carbonés : le cyanure (\(-\text{CN}\)) (Clayden, chapitre 6)

Le groupe cyano (aussi appelé nitrile) ne se retrouve pas très fréquemment dans les produits naturels. L'amygdaline ou amygdaloside est le principe toxique présent dans les graines de nombreuses rosacées : amandes amères, graines de Cotoneaster. Nous verrons plus loin comment cette structure libère l'ion cyanure qui est extrêmement toxique. Le fenvalérâte, un pesticide commercial très répandu (e.g. on le retrouve dans les produits ‘Raid’), contient aussi un nitrile.

La réaction d'addition de l'ion cyanure sur les cétones et aldéhydes produit des cyanohydrines très utiles en synthèse. Cette réaction peut être réalisée par catalyse en milieu basique ou acide et est une réaction d'équilibre. Les cyanohydrines ne sont pas très stables et leur formation est très dépendante de la nature de l'aldéhyde de départ. Les cétones ne forment presque jamais de cyanohydrines stables à part quelques unes comme l'acétone et les trihalogénocétones.
Le benzaldéhyde est plus réactif que le p-méthylbenzaldéhyde qui est plus réactif que le p-méthoxybenzaldéhyde qui est plus réactif que le p-N,N-diméthylaminobenzaldéhyde. Ce résultat peut être expliqué par la donation d'électrons par le cycle aromatique. Plus celui-ci est riche en électrons, plus le carbone du carbonyle l'est aussi et moins le carbonyle est réactif. Le p-N,N-diméthylaminobenzaldéhyde est le moins réactif car l’azote est meilleur π-donneur que l’oxygène.

Au cours de la digestion des amandes, l'hydrolyse des liaisons glycosides permet la libération du mandélonitrile, une cyanohydrine, qui est ensuite hydrolysée en libérant l’ion cyanure. L’ion cyanure se fixe sur l’hémoglobine préférentiellement à l’oxygène de l’air ce qui inhibe la respiration et provoque la mort en quelques minutes.
La formation de cyanohydrines est très utile en synthèse organique. La réaction la plus courante est l'hydrolyse du nitrile en acide carboxylique par l'action de l'acide dans l'eau. Notez que de réaliser ces deux réactions constitue l'équivalent d’additionner l’ion (−CO₂H) à un carboxyle. Vous n’êtes pas sans savoir que cet ion est impossible à générer (ou à tout le moins, extrêmement difficile). Nous verrons plus loin que l’ion cyanure peut aussi se transformer en groupement −CHO, CH₂NH₂ et d’autres encore. La réaction s’est avérée très utile dans l’homologation des sucres de Kiliani-Fisher. Cette séquence servait à déterminer la stéréochimie absolue des glucides inconnus en les homologuant d’un carbone et en pouvant ainsi les comparer avec les pentoses connus comme le xylose et le lyxoze.

4.5 Addition des nucléophiles carbonés : les organométalliques (R₃C⁻) (Clayden chapitre 6, p. 142 et chapitre 9)

4.5.1 Réactions des organométalliques
Les réactifs organométallique de type Grignard (RLi, RMgBr, RZnCl) réagissent dans le même solvant dans lequel ils sont formés (voir chapitre 2) sans être isolé ou purifié car leur manipulation est rendu difficile dû à leur extrême sensibilité à l'eau et à l'oxygène. Si une cétone ou un aldéhyde est ajouté au milieu réactionnel, le carbone nucléophile s'additionne sur le carbonyle de la façon usuelle et un alcoolate métallique est produit. Celui-ci est stable et la réaction est donc irréversible. Puis dans une seconde étape, on ajoute de l'acide dans l'eau pour générer l'alcool final.

Les réactions sont conduites en absence totale d'eau ou d'alcool sinon l'organométallique formé réagira aussitôt avec l'eau pour donner l'alcool et le sel métallique correspondant. De même, la molécule organométallique ne peut posséder un groupement fonctionnel susceptible de réagir avec le carbone nucléophile. Le schéma ci-dessous exhibe les groupements fonctionnels compatible ou non-compatible avec la fonction organométallique.
Conditions strictement anhydres sinon:

\[
\text{MgBr (OH)} + \text{MgBrX}
\]

Voici des organométalliques qui possèdent une fonction réactive incompatible et qui ne peuvent donc pas être préparé et utilisé.

\[
\text{LiOH} \rightarrow \text{LiO} + \text{H}
\]

\[
\text{Li} + \text{H}
\]

\[
\text{X} = \text{H, C, OR, NR}_2, \text{SR}, \text{Cl}, \text{etc.}
\]

\[
n = \text{nombre entier}
\]

Ces organométalliques ne possèdent aucune fonction incompatible et sont utilisable.

De plus, les organométalliques qui possèdent un groupement partant en position β (c’est à dire adjacente au carbone qui porte le métal) ne sont généralement pas stable. Ils subissent de façon irréversible une
réaction d’élimination pour donner un alcène. Les amines sont une exception car il ne sont pas bon groupement partant et pourront être présent à cette position.

\[
\text{LiOMe}
\]

Exception: les amines ne sont pas suffisamment bon groupement partant et peuvent être présent à cette position (attention ne confondez pas avec les amides)

Vous vous souvenez de la synthèse du longifolène que nous avons vu à la section 4.2. La conversion de la cétone en produit final se fait comme suit. Le carbone final provient du méthyllithium (maintenant commercial mais fabriqué à partir du chlorure de méthyle). L’addition sur la cétone est irréversible et produit un seul alcool (consultez la section 4.5.3 qui traite de la stéréochimie). Celui-ci est ensuite déshydraté en longifolène.

Les organomagnésiens et les lithiens sont souvent appelés réactifs de Grignard du nom de leur découvreur (en collaboration avec Barbier). Ils sont très réactifs et plusieurs types d’électrophiles réagissent bien pour donner des produits différents. Les cétones et les aldéhydes donneront des alcools tertiaires et secondaires respectivement, alors que CO₂ donnera un acide carboxylique. De par leur grande réactivité, les Grignards ne peuvent être préparés lorsque le réactif contient lui-même une fonction carbonylue ou d'autres fonctions réactives (aldéhyde, cétone, ester, acide, alcool, amine, nitrile, nitro, et imine sont tous des groupes incompatibles avec les réactifs de Grignard) à moins, bien sûr, que la réaction intramoléculaire soit désirée. Par contre, les éthers, les alkyles, les aryles, les alcynes
internes et les alcènes et les groupements fluor et chlore sont compatibles et ne réagiront nullement avec les réactifs de Grignard.

Il y a souvent plus d'une combinaison différente de réactif de Grignard et carbonyle pour arriver au même produit final. Par exemple, le 2-hydroxy-2-phénylpentane peut être fabriqué à l'aide d'organométalliques de trois façons différentes: addition du bromure de phénylmagnésium (ou phényllithium) sur la 2-pentanone; addition du bromure de propylmagnésium sur l'acétophénone; et finalement addition du bromure de méthylmagnésium sur la 1-phényl-2-butanone.

Toutes ces méthodes ne sont pas équivalentes puisque certains réactifs de Grignard sont plus ou moins réactifs ou peuvent même avoir une réactivité secondaire. C'est le cas du CH₃CH₂CH₂MgBr qui ne donne que 30% du produit désiré et 70% du produit de réduction. La réduction est une réaction compétitive dans plusieurs cas où des hydrogènes sont disponibles en β du métal. Le mécanisme est similaire à celui de la réduction de Meerwein-Pondorf-Verley. D'ailleurs certains métaux ont une tendance inhérente à éliminer M-H pour donner l'alcène correspondant.
Lorsqu'un alcool tertiaire doit être construit à partir d'un Grignard, il est préférable de prendre l'organométallique qui n'a pas de H en β- ou en général de prendre le réactif de Grignard le moins encombré.
APP 4.10 (problème en classe): Faites la synthèse de cet intermédiaire à partir du géranal (dérivé des constituants de la rose) en utilisant les réactions que vous avez examiné jusqu'à maintenant.

![Géranal (roses)](image)

4.5.3 Stéréochimie d'addition des nucléophiles sur les carbonyles (Clayden chapitre 34, pp. 887-895)

Lorsqu'une cétone possède deux groupements différents, l'addition d'un nucléophile distinct de ces groupements va créer un nouveau centre chiral. On dit alors du carboxyle qu'il est pro-chiral. S'il n'y a pas d'autre centre chiral déjà présent dans le substrat, et si le nucléophile ne possède pas de centre chiral, le produit final sera nécessairement un mélange racémique de deux énantiomères (R et S). Les aldéhydes ayant nécessairement deux groupes différents vont subir le même sort.

![Schéma](image)

Mais si un centre chiral existe déjà sur la cétone ou l'aldéhyde, il pourra influencer, s'il est suffisamment rapproché du carboxyle, l'approche du nucléophile. Les deux produits alors formés sont des diastéréoisomères et leur formation ne sera pas forcément égale (RS, RR par exemple). On dit alors que la réaction est stéréosélective (diastéréosélective pour être plus précis). La plupart du temps, le centre chiral doit être en α du carboxyle pour induire de l'asymétrie à la réaction. On parle d'induction asymétrique 1,2 dans le cas où le centre chiral est la position 1 et le carboxyle la position 2. Si le centre chiral est en β du carboxyle, on dira induction asymétrique 1,3 et ainsi de suite. Ces cas sont plus rares et ce genre d'induction asymétrique est généralement faible sauf dans les cas où la chélation est possible (voir plus loin).
Si la réaction d'addition nucléophilique est réversible, alors le **diastéréomère le plus stable** sera formé préférentiellement. Ceci est une stéréosélection avec contrôle thermodynamique. C'est le cas de l'addition des ions cyanures pour former des cyanohydrines. La stabilité relative des diastéréoisomères est souvent basée sur les effets stériques mais cela est souvent difficile à prédire sauf dans le cas de molécules rigides ou cycliques. Cependant, les calculs théoriques de modélisation moléculaire peuvent nous aider à prédire la stéréosélection.

Par contre, si la réaction est irréversible, comme c'est le cas de l'addition des Grignards ou des hydrures, la réaction sera contrôlée par la cinétique, i.e. la vitesse de formation. C'est donc l'état de transition le moins énergétique qui conduira à un diastéréoisomère le plus rapidement. La stéréosélection augmentera donc avec une baisse de la température. Il est possible de prédire la stéréosélectivité de la réaction en prédisant la conformation du substrat et en faisant ensuite attaquer le nucléophile sur la face la moins encombrée du carbonyle. La **réaction d'addition sur ce carbonyle** (synthèse du longifolène) par exemple s’est produite sur une seule des deux faces du carbonyle parce que l’encombrement stérique augmente l’énergie d’addition sur la face β (la face supérieure).
La cétone ci-haut est cyclique et il est relativement facile de prédire la conformation de la molécule et ainsi déterminer la face la plus ou la moins encombrée. Cependant, les aldéhydes et les cétones acycliques possédant un centre chiral en position $\alpha$ n’adoptent pas une conformation aussi facilement prévisible. Néanmoins, Felkin, Anh et Eisenstein ont développé un modèle qui permet la prédiction du produit majoritaire lors de l’addition irréversible de nucléophile sur des cétones et aldéhydes chiraux et acycliques. La règle de Felkin-Anh prédit que le carbonyl s’orientera de façon perpendiculaire au groupement le plus volumineux.  Ensuite, le nucléophile attaque sur la face la moins encombrée, i.e. du côté du plus petit substituant.

Il y a deux (et seulement deux) façons de placer le groupe le plus volumineux perpendiculaire au groupement carbonyle. La raison pour laquelle ces deux conformations sont plus stables provient d’un meilleur recouvrement d’orbitales moléculaires entre le lien $\sigma$ du gros groupement et l’orbitale antiliane du carbonyl (ce concept difficile de recouvrement d’orbitales n’est pas au programme et vous n’êtes pas tenu de le comprendre). De ces deux conformations, l’angle d’attaque du nucléophile est défini par l’angle de Dunitz qui est d’environ 105°. L’angle d’attaque est incontournable et provient du fait que l’orbitale antiliane du carbonyl se retrouve environ à 105° du plan du lien $\pi$. 
L'attaque nucléophile sur une cétone est souvent plus sélective car la différence d'énergie entre les deux orientations perpendiculaires possibles est plus grande. Ceci est dû au fait que les effets stériques augmentent de façon exponentielle avec la grosseur des groupes en interaction. Plus les groupes sont volumineux, plus l’effet stérique est important.
Dans leur synthèse du calcitriol (forme active de la vitamine D₃, qui régule le métabolisme du calcium et du phosphore et promouvoit certains processus comme la différenciation et la prolifération cellulaire ainsi que diverses fonctions immunitaires. Étant donné les effets secondaires engendrés par le calcitriol (calcémie), il est important de préparer des analogues synthétiques) un groupe espagnol a réduit une cétone chirale avec une sélectivité de 7 : 3 en faveur du produit de Felkin.
Il faut bien noter qu'il y a des exceptions à cette règle puisque celle-ci est basée sur les effets stériques uniquement. Par exemple, un substituant chlore, bien qu'il puisse être plus petit que les autres groupements, se comporte toujours comme le groupe le plus volumineux. Ce n'est pas à cause de son volume, mais bien à cause de l'effet électrostatique avec le carbonyl. Tout groupement electronégatif tel le fluore, le chlore, le brome, l'oxygène, l'azote se comporte comme le groupement le plus volumineux. Il y a rarement attaque sur le chlore avec les cétones et aldéhydes (voir section 5.3.3).

Il y a aussi l'effet de chélation (modèle Cram-Chélate). Un substituant oxygène, par exemple, peut chéler l'ion métallique et faire un "pont métallique" avec le carbonyl. Ceci à pour effet de geler la conformation du substrat et l'attaque nucléophile s'ensuit sur le côté le moins encombré. La question suivante se pose tout de suite : quand un oxygène participe-t-il à une chelation avec le métal et quand se place-t-il perpendiculaire au groupement carbonyle (notez que les deux conformations mènent à des
diastéréoisomères opposés). La réponse n’est pas aisée. Cependant, pour notre bénéfice, nous considérerons que la présence d’un oxygène ou d’un azote en position α du carbone donnera toujours le produit Cram-Chélate

![Diagramme de réaction]

Deukjoon Kim et son équipe coréenne de synthèse on récemment fabriqué la brefeldine A, un métabolite fongique (champignon *fungus Penicillium decumbens*) qui possède plusieurs activités biologiques incluant des propriétés antibiotiques et antivirales. Son mode de fonctionnement réside principalement dans sa capacité à désassembler les complexes de Golgi (impliqués dans le stockage et la sécrétion des biomolécules). C’est aussi un inducer de l’apoptose chez les cellules cancéreuses. Il est présentement en essais précliniques. Dans leur synthèse, cette équipe a utilisé une réaction d’addition d’un bromure de vinylmagnésium sur un aldéhyde dérivé de l’acide lactique. L’aldéhyde possède une fonction éther en α et donc l’addition est sous contrôle ‘Cram-chélate’. Le produit majoritaire est celui où les deux oxygènes sont *syn* l’un par rapport à l’autre.
Revenons aux cétones cycliques si vous le voulez bien. Les composés cycliques, de par leur conformation rigide, peuvent donner lieu à des réactions sélectives. Bien que l'addition des hydrures (petits nucléophiles) sur les cétones acycliques ne soit pas très sélective (l'exemple ci-haut donnait 7 : 3), elle l'est plus sur les cétones cycliques. La 4-t-butylcyclohexan-1-one, par exemple, qui est conformationellement gelée, peut conduire à l'alcool axial ou équatorial selon la trajectoire d'approche de l'hydrure métallique. Un petit hydrure comme le NaBH₄ ou le LiAlH₄ donnera majoritairement l'alcool équatorial, i.e. par une attaque axiale. Par contre les hydrures plus volumineux comme le LiB(s-butyl)₃ choisiront l'attaque équatoriale, moins encombrée, pour donner l'alcool axial.

La sélectivité provient de la différence d'énergie entre les différents états de transition. L'attaque axiale est favorisée par les petits réactifs puisque l'alcoolate qui est produit ne passe pas par une forme éclipsée.
avec les deux hydrogènes en α. Ce n'est pas le cas pour l'attaque équatoriale qui "pousse" l'alcool en position axiale en passant par une forme éclipsée. Par contre, lorsque le réducteur est gros, l'attaque axiale devient énergétiquement défavorisée à cause des hydrogènes axiaux en β qui empêchent cette approche.

Lorsque la cyclohexanone est substituée en position 2 ou 6, la forme éclipsée lors de l'attaque équatoriale devient plus haute en énergie (interaction Me/C=O plutôt que H/C=O). De même, un groupement alkyle se trouvant en position 3 ou 5 et axiale va beaucoup augmenter l'énergie de l'état de transition de l'attaque axiale, au profit de l'attaque équatoriale.
Que ce soit une réduction chimique ou biologique, lorsqu'un nouveau centre chirale est créé, le réactif doit pouvoir différencier énergétiquement les deux énantiomères possibles. Il faut donc que le réactif contienne de la chiralité pour pouvoir rendre les deux états de transition diastéréométriques. Les réactifs achiraux comme NaBH₄ et LiAlH₄ ne peuvent discriminer les deux états de transition énantiomériques et donneront un mélange racémique des deux produits R et S. Par contre, un enzyme étant chiral, peut faire cette discrimination et si la différence énergétique est suffisante, produire un seul des énantiomères possibles.
**COMPRENDS-TU SANS DESSIN ?**

a) Dessinez la perspective Newman de l’acide (R)-lactique, la fonction carbonyle au devant.
b) Faites tourner le carbone arrière de 180 °
c) Tournez maintenant cette dernière structure pour placer la fonction acide derrière.
d) Convertissez la perspective Newman suivante en perspective zig-zag de façon à placer la fonction alcool à droite qui pointe vers le bas.

![Image de la structure](image1.png)
e) Même chose mais cette fois, le chlore doit être à droite et pointer vers le bas.
f) Étant donné la réaction suivante, dessinez la forme chélatée (coordinée) avec le méthoxy.
g) Tournez cette forme chélatée de 180 ° par rapport à l’axe z.

![Image de la réaction](image2.png)
4.5.4 Les ylures (Clayden chapitre 14, pp. 357-358)

On appelle **ylures** les espèces chargées négativement au carbone stabilisé par un hétéroatome qui est chargé positivement. Nous allons voir au chapitre 6, comment préparer les ions ammonium, sulfonium et phosphonium. Il est possible de déprotonner ces espèces en utilisant une base forte comme le \( n \)-butyllithium pour générer l'ylure correspondant. La charge négative peut être localisée dans une des orbitales "d" du soufre ou du phosphore ce qui donne lieu à un double lien entre le carbone et l'hétéroatome. Cependant, cette double liaison est hautement polarisée puisque les orbitales "d" sont à un niveau énergétique supérieur à celui des orbitales "p" du carbone. Les ylures d'azote ne sont pas stabilisés de la sorte puisque l'azote ne possède pas d'orbitale "d". Aussi, ces derniers sont plus difficiles à former et auront tendance à donner le produit d'élimination plutôt que de former l'ylure (voir chimie organique III).

Les ylures sont des nucléophiles assez réactifs qui additionnent facilement sur un carbone. Cependant, et contrairement aux réactifs organométalliques, ils possèdent un atome chargé positivement (azote, soufre ou phosphore) qui permettra à la réaction de continuer. Le produit final n’est donc pas simplement le produit d’addition, mais le produit d’étapes subséquentes. Parmi celles qui nous intéressent, la réaction de **Wittig** est la plus utile. Le produit final est un alcène (double liaison). La double liaison est bien sûr incluse dans d’innombrables produits naturels. Mais l’alcène, tout comme le carbone, est un levier synthétique hors pair, ce qui fait qu’il est utilisé très fréquemment comme intermédiaire synthétique dans une synthèse totale. Prenez par exemple, la synthèse de la brévicomine que l’on a étudié dans la section 4.2 : l’époxyde est préparé par oxydation d’une double liaison et au préalable la double liaison est fabriquée en utilisant un ylure de phosphore.
La réaction la plus employée pour former des doubles liaisons carbone-carbone est la réaction de Wittig ou ses analogues. Dans cette réaction, un ylure de phosphore est généré et réagit avec un aldéhyde ou une cétone (seulement). Le mécanisme passe par plusieurs étapes. L’addition de l’ylure sur le carboneyl produit un intermédiaire appelé bétaïne où l’oxygène est chargé négativement et le phosphore positivement. L’oxygène se lie au phosphore et forme ainsi un oxaphosphétane qui perd l’oxyde de triphénylphosphine et génère un lien double. La transformation globale permet donc de remplacer le lien double du carboneyl par un lien double avec le carbone de l’ylure.

Le LTB₄ est chimiotactique pour les macrophages. La double liaison cis est fabriquée par une réaction de Wittig. La partie rouge représente le fragment carboneyle et la partie bleue le fragment ylure de phosphore. Dessinez les deux produits de départ.

Le PGF₂ possède des propriétés broncho-constrictives et vaso-dilatatrices et est impliqué dans l’asthme. La partie rouge représente le fragment carboneyle et la partie bleue le fragment ylure de phosphore. Dessinez les deux produits de départ.

Les réactifs de Wittig qui possèdent un groupement ester ou amide sont appelés ‘réactifs de Wittig stabilisés’. Ils ont la particularité de former des liens double trans. La raison pour ce changement ne sera pas étudier dans ce cours. La (-)-minlactone, par exemple, est synthétisée à partir de la (+)-limonaldéhyde (présente dans les agrumes) et de la réaction d’un Wittig stabilisé pour former un lien double trans. La mintlactone est un consituant de la menthe qui lui confère un arôme sucré. Remarquez la protection initiale de l’aldéhyde pour permettre la formation de l’autre aldéhyde et sa réaction de Wittig subséquente sans interférence. On déprotège ensuite le premier aldéhyde pour poursuivre la synthèse.
Le soufre ne réagit pas tout à fait de la même façon (Clayden chapitre 46, pp. 1258-1261). Lui aussi peut s'additionner aux aldéhydes et aux cétones mais le produit de réaction est l'époxyde ou le cyclopropane selon que le carbonyl est α,β-insaturé ou non. Les cétones saturées donnent lieu aux époxydes via l'attaque 1,2- directement sur le carbonyl. L'intermédiaire alcoolate déplace le soufre dans une réaction SN2. Pourquoi l'ylure de sulfonium réagit-il pour donner un époxyde alors que l'ylure de phosphonium réagit pour donner l'alcène (réaction de Wittig)? La force motrice de la formation de l'alcène est en fait la formation du lien fort P=O de 529 kJ/mol ou 126 kcal/mol. Par comparaison, la force du lien S=O est seulement de 367 kJ/mol ou 88 kcal/mol (vous pouvez convertir les unités d'énergie et toutes les autres unités à [http://www.onlineconversion.com/](http://www.onlineconversion.com/))
La phyllanthocine (l’aglycone du puissant agent antitumoral phyllanthoside) est synthétisé en partie par une réaction d’époxydation qui utilise un ylure de soufre.

Les cétones α,β-insaturées subissent une attaque 1,4- ou 1,2- sur la double liaison dépendamment du nucléophile. Ainsi, si l’ylure de sulfonium est non-stabilisé, l’attaque 1,2- prédominera et mènera à l’époxyde, comme montré ci-dessus. Par contre, les ylures qui possèdent en plus un groupement capable de stabiliser la charge négative procéderons par une attaque 1,4- pour conduire à la formation du cyclopropane. L’énolate ainsi produit substitue le soufre pour donner le cyclopropane correspondant.
L’addition-1,2 des ylures non-stabilisés sur le carbone est plus rapide que l’addition-1,4 et est irréversible. Par contre, les ylures stabilisés additionnent de façon 1,4 mais réversiblement (du à leur plus grande stabilité). L’attaque-1,4 bien que plus lente, est favorisée car elle brise une liaison double C=C plus faible qu’une liaison C=O. La stabilisation de l’ylure peut aussi provenir d’un atome d’oxygène directement lié au soufre. Les ylures de sulfoxonium sont stables et mènent à la formation du cyclopropane.

Une synthèse de l’africanol (sesquiterpène isolé du corail Lemnalia africana) utilise cette méthode pour installer le cyclopropane. Notez que le produit est racémique bien qu’un seul des énantiomères soit représenté pour plus de clarté.
4.6 Addition nucléophile des composés azotés (Clayden chapitre 14, pp. 350-354)

4.6.1 Formation d'imines

Les imines (aussi appelées bases de Schiff) sont préparées en faisant réagir une amine primaire avec un aldéhyde ou une cétone selon le mécanisme suivant. La réaction procède à une vitesse maximale lorsque le pH est entre 3 et 5. La vitesse de réaction diminue rapidement à pH plus bas puisque l'amine de départ est alors protonée et ne peut plus servir de nucléophile. À pH plus élevé (milieu basique), l'étape d'élimination de l'eau est ralentie puisque la protonation est défavorisée et même impossible en milieu trop basique. Les imines aliphatiques sont stables mais moins que les imines aromatiques puisque ces dernières bénéficient de la conjugaison avec le phényle.
L'hydrolyse des imines à lieu en milieu acide aqueux et le mécanisme est exactement l'inverse de celui de leur formation. Les imines sont en équilibre avec la forme énamine. Cette dernière n'est généralement pas favorisée à moins qu'il n'y ait des raisons stériques ou électroniques contraintantes. La formation d'énamines est possible à partir d'amines secondaires qui, elles, ne peuvent former d'imines neutres.

### 4.6.2 Formation d'énamines

Les énamines sont produites lorsqu'un aldéhyde ou une cétone réagit avec une amine secondaire. La déprotonation de l'ion iminium n'est alors plus possible et il y a perte d'un proton en α de la double liaison. Comme dans le cas des imines, l'hydrolyse se fait en milieu acide aqueux avec un mécanisme inverse à celui de leur formation.

![Schéma montrant la formation d'énamine à partir d'aldéhyde et d'amine secondaire](image.png)

### 4.6.3 Amination réductive et déamination oxydative

APP 4.12 Les imines et les énamines sont des espèces réactives et pour cette raison, elles sont moins fréquemment présentes dans les produits naturels. Lorsque l'imine ou l'énamine est stabilisée par conjugaition ou aromaticité, alors elle peut faire partie d'un produit naturel. La criocérine (alkaloïde de la famille des vincamyncines isolé du champignon *Crioceras dipladeniiiflorus*) et la néosurugatoxine (inhibiteur de la sécrétion de la dopamine par action sur les récepteurs nicotinique et acétylcholine à
l'interface neuromusculaire et au SNC) sont des exemples. Trouvez toutes les fonctions énaminées et imines dans ces molécules.

Les imines sont d'importants intermédiaires lors de la biosynthèse d'acides aminés dans les systèmes vivants. Par exemple, l'acide glutamique est biosynthétisé à partir de l'alanine. Une enzyme spécialisée catalyse la formation d'une imine entre le groupement amine de l'alanine et le phosphate de pyridoxal. Puis l'enzyme provoque la migration la double liaison pour former une imine isomérique à la première. C'est maintenant le carbone du phosphate de pyridoxal qui est doublement lié à l'azote. L'enzyme peut hydrolyser cette imine et démasquer la cétone de l'acide pyruvique et l'amine du phosphate de pyridoxamine. Ensuite le même échange, via des imines isomériques, s'effectue entre le phosphate de pyridoxamine et l'acide glutarique pour éventuellement former l'acide glutamique et le phosphate de pyridoxal de départ. Ces enzymes effectuent ces transformations de façon tout à fait énantiosélective.
4.7 Addition-1,4 ou addition de Michael (Clayden chapitre 10)

La fonction cétone ou aldéhyde qui possède une insaturation en α-β, soit une double ou triple liaison, présente ainsi aux nucléophiles deux sites réactionnel. Le carboxyle lui-même et la position β sur l'insaturation. Ceci devient compréhensible en regardant les formes limites de résonance d'un tel système. Les nucléophiles auront donc un choix de deux réactions possibles, soit l'addition-1,2 (l'attaque directe sur le carboxyle) soit l'addition-1,4 (l'attaque sur l'insaturation).
APP 4.13 Dans leur synthèse d'allocyathin B₂ (sesquiterpène avec un squelette carboné intéressant, isolé des fruits du Cyathu earli et de certains champignons), Tori et ses co-équipiers ont pensé fabriquer l'intermédiaire cyclohexanone suivant. Sur lequel des deux sites réactifs le réactif de Grignard va-t-il additionner?

La différence majeure entre les deux sites réactionnels se retrouve au niveau de leur caractère dur ou mou. La charge partielle positive étant plus concentrée sur le carboneyle, celui-ci est plus 'dur' que le carbone β où la charge est plus diffuse, plus 'molle'. Les nucléophiles durs vont donc favoriser l'attaque 1,2 alors que les nucléophiles mous vont additionner 1,4.

Les organolithiens, les organomagnésiens, les hydrures d'aluminium ou de bore sont des nucléophiles durs et vont préférer l'attaque 1,2. C'est donc dire que les additions que nous venons de voir dans les deux dernières sections fonctionnent sur des cétones et aldéhydes α,β-insaturés avec attaque sur le carboneyle tel que décrit.
Cependant, d'autres organométalliques comme les organocuivreux et les organozinciques se comportent comme des nucléophiles mous et additionnent de façon 1,4 sur les cétones et les aldéhydes α,β-insaturés. Nous ne verrons ici que les organocuivreux car les organozinciques sont plus difficiles à fabriquer et à manipuler. Les organocuivreux sont préparés à partir des organolithiens ou organomagnésiens. Presque chaque fois qu'un organolithien ou magnésien peut être préparé, l'organocuivreux correspondant peut l'être aussi. Ceux-ci se préparent souvent à 0 °C dans un solvant comme l'éther ou le THF.

\[
R-\text{Br} \xrightarrow{\text{Li ou Mg}} R-\text{Li} \xrightarrow{1/2 \text{CuI}} R-\text{CuLi} + \text{LiI} \xrightarrow{\text{Ether ou THF}} R-\text{CuLi}
\]

On les prépare souvent in situ, c'est à dire directement sans les isoler et on ajoute la cétone ou l'aldéhyde α,β-insaturé. L'addition se fait exclusivement 1,4 et le produit est isolé après un work-up avec le mélange NH₄Cl/NH₄OH saturé qui oxyde les sels de cuivre (I) en sels de cuivre (II) plus solubles dans l'eau. Les aldéhydes peuvent exceptionnellement donner lieu à de l'addition-1,2. Un excès d'organolithien ou d'organomagnésien doit être évité de façon à ne pas créer des additions-1,2 compétitives.

Le mécanisme d'addition n'est pas aussi simple que le montre le schéma. Il commence souvent par un transfert d'un seul électron suivi de la migration des ligands. Nous ne verrons pas en détails ce mécanisme, mais utilisons plutôt la version simplifiée tel que montrée. L'addition fonctionne aussi avec des esters α,β-insaturés comme nous le verrons dans le prochain chapitre.

L'oxosilphiperfol-6-ène est un sesquiterpène isolé de la tige du *Espeletiopsis guacharaca* et des racines du *Silphium perfoliatum*. Les sesquiterpènes ayant un squelette tel que celui-ci ont été une cible difficile pour les chimistes dans les années 70 et 80. Ce squelette porte le nom de *triquinane* qui fait allusion à leur trois cycles à cinq-membres. La synthèse est complétée par l'addition du diméthylcuprate sur cette énone tricyclique. L’intermédiaire énolate est piégé par un électrophile à base de silicium (voir chapitre 4).
Plusieurs autres nucléophiles carbonés additionnent de façon 1,4- sur les énones. L’ion cyanure par exemple, ainsi que les nucléophiles soufrés et azotés. Il y a bien sûr des exceptions et certains de ces nucléophiles peuvent additionner 1,2. C’est le cas spécialement lors de l’addition sur les aldéhydes puisque leur carbonyle est passablement moins encombré que celui des cétones. Pour les besoins de la cause, nous supposerons que l’addition des nucléophiles nommés ci-haut se fait toujours 1,4 peu importe le carbonyle.

\[ \text{Me}_2\text{CuLi} \rightarrow \text{Me}_3\text{SiCl} \]

\[ \begin{align*}
\text{Et}_2\text{O} & \quad \text{Me}_2\text{CuLi} \\
\text{Me}_3\text{SiCl} & \quad \text{Me}_2\text{CuLi}
\end{align*} \]

\[ \text{O} \]

\[ \begin{align*}
\text{NC} & \quad \text{O} \\
\text{CH}_3\text{SH} & \quad \text{H}_3\text{CS}
\end{align*} \]

\[ \text{RNH}_2 \]

\[ \text{R} \]

\[ \text{N} \]
4.8 Addition sur des analogues de la fonction cétone ou aldéhyde.

4.8.1 Réduction d'imines et de nitriles (Clayden p 354-355)

Il est possible d'additionner des nucléophiles sur des équivalents azotés du groupe carbonyle. Les imines et les nitriles sont polarisés dans le même sens que le carbonyle avec le carbone portant une charge partielle positive et l'azote étant nucléophile. Ils sont donc réactifs face à des hydrides métalliques comme le LiAlH₄ et le NaBH₄. Le produit de réduction est l'ammon correspondante. Le mécanisme est identique à celui de la réduction de cétones et d'aldéhydes avec la différence que LiAlH₄ additionne deux fois sur la fonction nitrile.

\[
\begin{align*}
\text{Li}^+ & \quad \text{OH} \\
\text{LiAlH}_4 & \quad \text{MeOH/H}_2\text{O} \\
\text{NaBH}_4 & \quad \\
\text{NaBH}_3\text{CN} & \quad \text{H}_2\text{O, pH 5-6} \\
\text{LiAlH}_4 & \quad \text{excès/THF} \\
\text{H}_3\text{AlH}_2 & \quad \\
\text{H}_3\text{AlH}_2 & \quad \text{excès/THF}
\end{align*}
\]

L'hydrure NaBH₃CN est particulièrement intéressant car il réduit les imines et les iminiums in situ, c'est-à-dire dans le même ballon réactionnel dans lequel l'imine est fabriquée (on appelle cette transformation d'une cétone ou aldéhyde en amine l’amination réductrice). Notez que les conditions pour former une imine sont légèrement acides et que le NaBH₃CN ne réagit que très lentement avec l’acide (ce n’est pas le cas du NaBH₄ et du LiAlH₄ qui réagiraient violemment avec l’acide).

La dernière étape dans la synthèse du lycorane consiste en la réduction d’un iminium par NaBH₄.
CH$_3$SO$_2$Cl
LiCl
Lutidine
83%

Benzène
140 °C

NaBH$_4$
MeOH
63%

Lycorane
Par exemple, dans la synthèse de la tubifolidine (alkaloïde de la famille des strychnanes dont la strychnine est la plus connue car elle est un des poisons les plus mortels. Elle agit en bloquant les neurotransmetteurs cholinergiques au niveau du SNC), le cycle pyrrolidine (cycle à 5 contenant un azote) est préparé à partir de la formation et réduction *in situ* d’une imine et d’un iminium.

**APP 4.14** Faites le mécanisme complet de cette réduction

Un exemple de réduction des nitriles est illustré dans la synthèse de la discorhabdine C, un alkaloïde de la famille des pyrroloquinolines que l’on retrouve dans les éponges marines du génus *Latrunculla* le long de la côte de la Nouvelle-Zélande. Ils sont responsables de la pigmentation des éponges et plusieurs de ces alkaloïdes démontrent une activité anti-tumorale prononcée.
4.8.2 Addition de réactifs de Grignard sur les imines et les nitriles (Clayden 301, 351)

L'addition des réactifs de Grignards sur les imines produit des amines secondaires tandis que l'addition sur les nitriles conduit à une cétone parce que l'addition d'un deuxième réactif de Grignard sur l'intermédiaire métalloimine n'est pas possible comme dans le cas du LiAlH$_4$. La métalloimine est protonée par l'ajout d'acide mais l'imine résultante est rarement stable dans ces conditions et est hydrolysée pour donner la cétone.

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \\
\text{H}_2\text{N} \quad \text{H}_2\text{O} \\
\text{H}^+ & \quad \text{H}^+
\end{align*}
\]
La dernière étape de la synthèse de l’épimère de l’hélioporine B par Schmalz et ses collaborateurs implique une addition d’un réactif de Grignard sur un nitrile pour donner directement la cétone après hydrolyse en milieu aqueux acide.

4.9 Problèmes dans le Clayden :

Chap 6 : 1, 2*, 3, 4 (spectro facultative), 5, 6, 7*, 8*, 9, 10, 11.
Chap 9 : 1, 2*, 3, 4, 5, 6, 9, 10, 11
Chap 10 : 1, 2, 5, 6* (CuSPh équivalent à CuI), 8, 9, 10*, 11, 12
Chap 14 : 1, 2, 3 (attn : pour les cétones, on dit cétals pas acétals), 4*, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14* 
Chap 34 : 2, 7*, 8, 9, 11, 13
Chap 46 : 1* (seulement A), 2*, 6, 7 (1ère partie seulement), 12* (attn > 1 éq. de l’yylure)
(*) = important
5. Additions nucléophiles sur les carbonyles: acides carboxyliques et leurs dérivés (Clayden, chapitre 12 et 14)

5.1 Réactivité de la fonction acide et de ses dérivés.

La fonction acide et ses dérivés peuvent se représenter par la structure suivante où X = OH (acide carboxylique), OR (ester), O(C=O)R (anhydride), NR₂ (amide), Cl, Br (halogénure d'acide), SR (thioester) etc.

La réactivité de ces carbonyles face aux nucléophiles est contrôlée par la nature du groupement X qui peut soit donner soit retirer de la densité électronique au carbone par induction ou par résonance. Souvent, un groupe peut être électro-attracteur par induction et électro-donneur par résonance. Les deux facteurs influenceront la réactivité du carbone.

Les acides, les esters et les amides, par exemple, sont en moyenne moins réactifs que les cétones et les aldéhydes car l'oxygène et l'azote sont meilleurs électro-donneurs par résonance (électrons π) qu'électro-attracteurs par induction (électrons σ). Les halogénures, par contre, sont plus électro-attracteurs qu'électro-donneurs et par conséquent les halogénures d'acides sont plus réactifs que les autres carbonyles. Les effets stériques et autres effets entreront aussi en ligne de compte selon le cas. L'effet stérique diminuera la réactivité alors que l'effet électrostatique pourra soit l'augmenter ou la diminuer selon qu'il attirera ou repoussera le nucléophile. L'ordre de réactivité des carbonyles est en général comme suit:
Dans le chapitre précédent on a vu que l'addition nucléophilique sur les cétones et les aldéhydes donne des alcools puisque l'intermédiaire d'addition est stable. Par contre, chez les dérivés d'acides carboxyliques, la présence d'un bon groupe partant déstabilise l'intermédiaire et la réaction suit alors un autre cours. Il y a une possibilité (pas forcément) de reformer le groupement carbonyle avec éjection du groupement partant X. Le nouveau carbonyle peut alors réagir une seconde fois SELON les conditions de réaction, le nucléophile et le groupement partant. Chaque cas est différent et il nous faut les voir séparément.

La capacité du groupe partant d'accommoder les électrons est reliée à son électronégativité, à sa polarisabilité, au solvant et aux conditions de réaction. En général, plus un groupe est une base de Lewis faible, plus il est bon groupe partant. L'inverse est aussi vrai. Donc, normalement la labilité des groupes partants augmente vers la droite d'une même rangée du tableau périodique C < N < O < F et augmente en descendant une même famille F < Cl < Br < I etc.

5.2 Addition des nucléophiles oxygénés et soufrés (Clayden chapitre 12)

5.2.1 Formation d'esters.

On rencontre fréquemment les esters dans les produits naturels. Cependant, l’ester est extrêmement utile comme levier synthétique car il peut être transformé en une multitude d’autres groupements fonctionnels (nous verrons cela au cours des prochaines sections).

L'estérisation d'un dérivé d'acide carboxylique implique le remplacement d'un groupe partant par un groupe OR provenant d'un alcool. La réaction la plus classique est l'estérisation de Fisher qui transforme un acide carboxylique en ester par catalyse acide. La réaction ne peut pas se produire en milieu basique puisque la déprotonation de l'acide prend place pour former RCOO⁻ et cette espèce ne peut pas être attaquée par l'alcool. Cette réaction en est sous contrôle thermodynamique (elle est à l'équilibre) et pour favoriser l'accumulation des produits finaux, on peut soit enlever l'eau au fur et à mesure qu'elle se forme, soit mettre un excès d'alcool.
L’acide (+)-malique est produit naturel qu’on retrouve dans les fruits comme le raisin (donc le vin). La combinaison de magnésium et d’acide malique réduit la douleur musculaire et est efficace dans le traitement des patients atteints du syndrome de fatigue chronique) est utilisé comme produit de départ dans la synthèse du fragment C₁-C₁₀ de l’antibiotique ionomycine (polyéther ionophore utilisé comme antibiotique pour le bétail. Il fonctionne par chélation sélective du calcium et transporte celui-ci à travers la membrane cellulaire, débalançant ainsi l’équilibre ionique de la cellule).
Ce procédé est également appliqué industriellement pour fabriquer toutes sortes d'esters. Par exemple l'acide α-bromoacétique donne l'α-bromoacétate d'éthyle. Une estérification intramoléculaire produit un ester cyclique appelé lactone. On parle alors de lactonisation. Les catalyseurs acides sont généralement HCl, H₂SO₄, et l'acide p-TsOH.

La réactivité du carbonyle chute avec l'accroissement de l'encombrement stérique, donc: CH₃CO₂H > (Et)₂CHCO₂H > Me₃CCO₂H etc. De même, un alcool plus encombré réagira moins vite. Comme pour les aldéhydes, les acides aromatiques sont moins réactifs puisque l'effet de résonance contribue à augmenter la densité électronique sur le carbonyle.

L'estérification peut aussi se faire d'un ester à un autre. On dit qu'il y a trans-estérification. Le mécanisme est identique à l'estérification et pour favoriser les produits on met un excès d'alcool dans la réaction. Puisqu'un ester n'est pas très acide, la réaction peut être catalysée par une base par exemple la réaction ci-dessous peut se produire avec l'éthanolate de sodium ou de lithium dans l'éthanol.

5.2.2 Formation de chlorures d'acyle ou d'anhydrides (Clayden p. 294)

Lorsque les substrats ne sont pas assez réactifs, il est possible d'activer l'acide carboxylique en le transformant en halogénure d'acide ou en anhydride. Ils sont beaucoup plus réactifs comme on l'a vu et la réaction avec le nucléophile peut alors se produire. Les chlorures d'acides sont généralement plus
utilisés et peuvent être fabriquer à partir de l'acide carboxylique et de chlorure de thionyle (SOCl₂) selon le mécanisme suivant:

\[
\begin{align*}
\text{H}_3\text{C} & \text{O} \quad \text{SOCl}_2 \quad \text{H}_3\text{C} \text{Cl} \\
\text{H}_3\text{CO}_2\text{H} & \quad \text{H}_3\text{C}_{\text{Cl}}\text{S}_{\text{Cl}}
\end{align*}
\]

Le dégagement de SO₂ et de HCl force l'équilibre en direction du chlorure d'acide. Les anhydrides sont généralement synthétisés à partir d'un acide carboxylique et d'un chlorure d'acide. La pyridine est employée pour déprotonner l'acide carboxylique et le rendre plus nucléophile. On peut fabriquer les anhydrides à partir de deux acides carboxyliques par déshydratation en chauffant. Le mécanisme est le même que pour la formation d'esters de Fisher. Cependant, les anhydrides mixtes (fait à partir de deux acides carboxyliques différents) peuvent donner trois anhydrides différents (1 mixte et deux symétriques). Pour cette raison, on utilise souvent un excès d'anhydride acétique et l'équilibre est déplacé vers l'anhydride désiré en distillant l'acide acétique formé. On peut aussi utiliser un chlorure d'acide et un acide pour fabriquer l'anhydride mixte. Les anhydrides cycliques ne requièrent pas d'agent séchant et on peut les fabriquer simplement en chauffant.
Les esters peuvent aussi servir de groupes protecteurs pour les alcools ou les acides carboxyliques. Cependant, les esters réagissent facilement avec les bases et les nucléophiles mais ils sont relativement stables en conditions acides et ils servent donc surtout à protéger contre les conditions acides. L’ester le plus fréquemment utilisé pour les protections d’alcools est le pivaloate (t-butylcarboxylate) comme le montre l’exemple suivant, une étape dans la synthèse totale de la (-)-halicholactone (métabolite d’éponge marine qui inhibe la lipoxygénase qui sert à la fabrication des prostaglandines. Il a donc du potentiel dans le traitement de l’asthme et autres conditions reliées au système immunitaire).

**APP 5.1 Pourquoi seul l’alcool primaire réagit-il?**

![Diagramme de la synthèse de la (-)-halicholactone]
5.2.3 Formation de thioacides et thioesters.

On peut préparer les thioacides et thioesters par substitution nucléophile de H₂S ou des thiols RSH respectivement. Le mécanisme de réaction est identique à celui de formation d'esters. Cependant, les thioesters sont beaucoup plus propices à la substitution nucléophile que les esters correspondants car les thiolates (RS⁻) sont de meilleurs groupes partants que les alcoolates (RO⁻). Il est facile de comprendre cela en regardant les pKa des thiols vs les pKa des alcools qui sont respectivement de 11 et 16.

La (+)-curacine A est un puissant agent antimitotique (inhibe la mitose, donc la division cellulaire) isolé des cyanobactéries (phytoplancton) près de la côte de Curaçao (Antilles). Il est un inhibiteur compétitif de la colchicine pour ses récepteurs situés au niveau des tubulines. Il empêche l’assemblage des microtubules.
5.3 Substitution nucléophile par les composés azotés (Clayden chapitre 12 et 14)

5.3.1 Formation d'amides (Clayden p. 284-286)

Les amines réagissent rapidement avec les chlorures d'acyles ou les anhydrides pour donner l'amide correspondant. Un excès d'amine est souvent utilisé pour réagir avec l'acide chlorhydrique qui est produit et ainsi assurer un déplacement de l'équilibre vers les produits. Les amines tertiaires ne peuvent réagir puisqu'elles n'ont pas de proton à perdre dans la dernière étape et resteraient chargées.

\[
\text{Cl} \quad \text{Me}_2\text{NH} \quad \text{Me}_2\text{NH}_2\text{Cl} + \text{HCl} + \text{Me}_2\text{NH} \\
\text{O} \quad \text{Cl} \quad \text{Cl} \quad \text{NMe}_2 \quad \text{O} \quad \text{NHMe}_2
\]

+ HCl + Me₂NH \rightleftharpoons Me₂NH₂Cl

Les amines peuvent aussi réagir avec les acides carboxyliques à haute température. La réaction initiale est une réaction acide-base pour donner le sel d'ammonium qui n'est pas nucléophile du tout. Cependant, le sel est en équilibre avec l'amine libre et l'acide carboxylique et à haute température il est possible d'obtenir la réaction d'addition de l'amine sur l'acide. Un amide cyclique est appelé "lactame" et peut être produit par cyclisation d'une amine et d'un acide contenus dans la même molécule.

\[
\text{O} \quad \text{PhNH}_3 \quad \text{NH}_2 \quad \text{CO}_2\text{H} \quad \Delta \\
\text{NH} \quad \text{O} \quad \text{HN} \quad \text{O} \\
\text{OH} \quad \text{PhNH}_2 \quad \text{OH} \quad \text{H}^+ \quad \Delta \\
\text{O} \quad \text{PhNH}_2 \quad \text{O} \quad \text{N} \quad \text{H} \quad \text{H} \quad \text{H}^+ \quad \Delta \\
\text{O} \quad \text{PhNH} \quad \text{OH} \quad \text{H}^+ \quad \Delta \\
\text{O} \quad \text{NPh} + \text{H}_2\text{O}
\]

Cette réaction est utilisée industriellement pour la préparation des nylons, i.e. les polyamides synthétiques. Par exemple, le sel de l'acide hexanedioïque et de l'hexanediamine est chauffé à plus de 270°C pour donner un polymère de Nylon appelé le "Nylon 66" dont on fait des tapis et des vêtements.
Cependant, cette méthode est peu utile au laboratoire sur de longues synthèses puisque la plupart des intermédiaires sont sensibles à la chaleur. Un réactif de couplage, de déshydratation, le dicyclohexylazadicarboxylate ou DCC (Clayden p. 1172), peut être utilisé pour activer l'acide et favoriser l'attaque nucléophile de l'amine. Dans le protocole expérimental, on mélange d'abord l'acide et le DCC pour en faire l'intermédiaire A qui sera ensuite attaqué par l'amine avec élimination d'urée. Les esters et les thioester peuvent aussi être synthétisés dans les mêmes conditions de réaction en utilisant le DCC comme agent déshydratant. Il suffit de remplacer l'amine par un alcool ou un thiol et le tour est joué. Les rendements en amides, esters et thioesters sont particulièrement élevés avec l'utilisation du DCC.

La formation d'amides à partir d'esters est très utile, surtout dans les cas où l'anhydride ou le chlorure d'acide ne sont pas disponibles. Il faut généralement chauffer un excès de l'amine avec l'ester pour
obtenir de bons rendements. Une seconde base telle que NaOH peut être aussi utilisée dans certain cas. Son rôle consiste à activer l’amine en coordonnant un de ses hydrogènes (il ne s’agit pas d’une déprotonation car NaOH n’est pas assez basique pour déprotoner une amine). La trans-amidation où un amide est transformé en un autre par l'action d'une amine est possible mais n'est pas très utile synthétiquement.

\[ \text{trans-amidation} \]

5.3.2 Synthèse peptidique (Clayden p. 651, 1171, 1475-1478)

APP 5.2 L’aspartame est 180 fois plus sucré que le sucre pour le même poids. Comment le synthétiser à partir des acides aminés naturels phénylalanine et acide aspartique?

La formation d'un lien peptidique est effectuée entre l'amine d'un acide aminé et l'acide carboxylique d'un autre. Lorsque plusieurs acides aminés sont joints entre eux on forme un oligopeptide et lorsque ce nombre devient suffisamment grand on parle alors de protéines. Toute cellule vivante est capable de fabriquer des oligopeptides et des protéines. Dans la cellule, une ou plusieurs protéines, co-facteurs et autres éléments essentiels peuvent se rassembler pour former une enzyme qui sera capable de catalyser une ou plusieurs réactions de biosynthèse ou d'effectuer la transmission d'un signal, de stopper la production d'un composé, etc. Les oligopeptides sont eux-mêmes des hormones, des neurotransmetteurs, des venins, etc.

La synthèse chimique des peptides n'est pas simple, bien qu'aujourd'hui elle soit automatisée. C'est qu'il faut toujours protéger la fonction amine d'un des acides aminés et la fonction carboxylique de l'autre.
Puis comme on l'a vu, la formation d'un lien amide requiert souvent la formation d'un chlorure d'acide ou bien l'utilisation du DCC. Les groupes protecteurs des amines sont souvent le BOC (tert-butoxycarbonyle) ou le Tosyle (p-toluènesulfonyle) tandis que la fonction carboxylique est souvent estérifiée pour fin de protection.

Il y a deux types de synthèses: en solution et en phase solide (Merrifield). Ce dernier type de synthèse utilise les mêmes réactifs et solutions que le premier type mais le substrat polypeptidique est préalablement fixé sur une résine polymérique. Il n'est donc pas nécessaire d'isoler et de purifier chaque nouveau peptide puisqu'un lavage de la résine suffit. De plus cette méthode est maintenant automatisée et la synthèse de nona- et décapeptides est maintenant routinière.

APP 5.3 Faisons encore la synthèse de l'aspartame, mais cette fois en phase solide.

5.4 Substitution nucléophile par l'eau (hydrolyse) (Clayden chapitre 12)

Tous les dérivés des acides carboxyliques peuvent être hydrolysés par l'eau et une base ou un acide pour donner l'acide carboxylique correspondant. Plus le dérivé d'acide est réactif, plus il réagit rapidement même souvent violemment. Par exemple, l'eau seule suffit pour hydrolyser les chlorures d'acides ou les
anhydrides alors qu'une base est requise pour les esters et un acide pour les amides. L'hydrolyse des esters en milieu basique est appelée la **saponification**. Le nom provient de l'hydrolyse basique des acides gras qui produit des savons de toutes sortes. Une différence majeure entre la saponification et l'hydrolyse en milieu acide est que cette dernière requiert une quantité catalytique d'acide alors que la première utilise un équivalent d'ions hydroxyles.

Les esters sont plus facilement saponifiés qu'hydrolysés en milieu acide puisque la dernière étape de saponification produit l'acide carboxylique qui est déprotoné en milieu alcalin. Par contre les amides sont difficilement hydrolysés en milieu basique puisque l'amine partante n'est pas très stable et que l'amide de départ est moins électrophile qu'un ester. L'hydrolyse acide, par contre, est plus aisée grâce à la protonation facile de l'azote. L'hydrolyse d'amides est très importante dans les systèmes biologiques puisque tous les peptides et protéines sont métabolisés ainsi.

Les fonctions Analogues au carbonyle, comme les amides et les cyanures, s'hydrolysent par un mécanisme très similaire. Les composés azotés se font hydrolyser difficilement en milieu basique car l’anion (NH₂⁻) est un mauvais groupe partant. Un ester est saponifier beaucoup plus rapidement dans ce milieu comme le démontre l’exemple suivant lors de la synthèse de la camptothécine (agent anti-tumoral et anti retro-viral). On peut tout de même hydrolyser un amide ou un cyanure dans un milieu fortement basique en chauffant.
Les amides et les nitriles se font hydrolyser plus aisément en conditions acides car l'azote est basique et le groupement partant devient alors NH$_3$. L'équilibre est poussé vers l'acide carboxylique par protonation de l'ammoniac ou l'amine libérée. Il reste que les amides sont plus difficiles à hydrolyser que les esters même en conditions acides. Les cyanures ont la particularité de pouvoir former des amides lorsqu'ils sont hydrolysés. Ceci est dû au fait que l'amide est un intermédiaire dans l'hydrolyse et qu'il est moins réactif que le cyanure de départ. Avec des conditions acides plus douces et des températures plus basses, il est possible d'arrêter à l'amide.

Les cyanures ont la particularité de pouvoir former des amides lorsqu'ils sont hydrolysés. Ceci est dû au fait que l'amide est un intermédiaire dans l'hydrolyse et qu'il est moins réactif que le cyanure de départ. Avec des conditions acides plus douces et des températures plus basses, il est possible d'arrêter à l'amide.

Si on chauffe (100 °C):

5.5 Addition d'hydrures (H⁻) (Clayden chapitre 12, pp. 297-301)

5.5.1 Réduction des différents groupements carbonyles

Le lycorane (voir les chapitres 2 et 4) a été synthétisé à partir de l’acide protocatéchuïque (un des monomères du tannins, entre autres). Il y a plusieurs réactions qu’on reconnaît dans cette synthèse : la réduction de l’aldéhyde en alcool; la formation d’un réactif de Grignard et l’addition-1,2 sur la cyclohexénone (remarquez que l’addition ne s’est pas fait 1,4); évidemment la réduction de l’ester qui nous concerne ici et la réduction finale de l’imminium que l’on a vu au chapitre 4.
La réduction des acides carboxyliques, esters et amides est plus difficile que celle des aldéhydes et des cétones puisque ces derniers sont plus réactifs. Les chlorures d'acides et les anhydrides cependant sont
plus faciles à réduire. Le choix des réactifs dépendra donc grandement de la fonction à réduire. Tous donnent des alcools primaires à l'exception des amides qui conduisent à l'amine correspondante. De plus, les esters et amides peuvent être réduits en aldéhydes sous certaines conditions. Dans tous les cas, l'aldéhyde est un intermédiaire qui se fait réduire en alcool.

Sous l'action de LiAlH₄, les esters, les chlorures d'acides et les anhydrides conduisent aux alcools primaires correspondants. L'intermédiaire produit après la première addition subit l'élimination du groupement partant. Avec ce réactif, il n'est pas possible d'arrêter la réduction à l'aldéhyde.

Les amidures, par contre, sont de mauvais groupements partants et pour cette raison, l'intermédiaire formé lors de la première addition élimine plutôt un alumininate. De cette façon, un iminium est formé et peut être réduit à son tour par LiAlH₄.

Une synthèse de la physostigmine, alkaloïde de la fève de calabar, utilise la réduction de l'amide pour générer deux fonctions amines. Cet alkaloïde est utilisé dans le traitement du glaucome et de la
myasténie grave (maladie apparentée à la dystrophie musculaire). Certains analogues de la physostigmine sont candidats pour le traitement du cancer et de la maladie d’Alzheimer.

Le borohydrure de sodium n'est pas assez réactif pour réduire les esters, acides ou amides. L'hydrure de lithium et d'aluminium par contre réduit tous les carbonyles. Les esters sont réduits jusqu'à l'alcool puisque l'intermédiaire aldéhyde est plus réactif que l'ester de départ. Il est donc impossible d'arrêter à l'aldéhyde. Deux équivalents d'hydrures sont nécessaires pour réduire les dérivés d'acides carboxyliques ce qui correspond à 1/2 équivalent de réactifs.

Avec un équivalent d'hydrure de diisobutylaluminium (DIBAL), il est possible de réduire les amides et les esters en aldéhydes.

Cette réduction partielle est possible parce que l'intermédiaire tétraédrique est stable à basse température et n'éjecte pas l'alcool ou l'aluminate. Ce dernier est donc irréductible puisqu'il ne contient pas de carbonyle. Lors de l'hydrolyse, l'excès de réactif est détruit puis l'intermédiaire aluminate est transformé en hydrate qui bien sûr produit l'aldéhyde. Bien entendu, avec deux équivalents à température ambiante, le DIBAL réduira les esters en alcools primaires et les amides en amines.
Nous avons vu à la section 2.8.2 que les groupements cyano sont susceptibles d'être réduits en amines correspondantes par l'action de l'aluminohydrure de lithium. Il est cependant possible d'arrêter cette réduction à l'aldéhyde en utilisant les mêmes conditions que précédemment, i.e. DIBAL-H dans l'éther ou le toluène à basse température.

Le cas des acides carboxyliques est différent. Le premier équivalent de réactif subit une réaction acide-base avec l'acide et produit le carboxylate de métal. Seul LiAlH₄ est ensuite capable de réduire ce carboxylate qui est peu réactif. Encore une fois, l'intermédiaire tétraédrique éjecte l'aluminate pour produire l'aldéhyde qui est réduit subséquemment en alcool.
5.5.2 Sélectivité des réductions: nature de l'hydrure (Clayden chapitre 24, pp. 617-621)

LiAlH₄ est le plus réactif des hydrures et n'est pas ou peu sélectif. Il réduira tout sur son passage et n'aura que peu de préférence pour une cétone, un aldéhyde, un ester, un amide etc. Le NaBH₄ cependant est moins réactif et plus sélectif. Il ne réduit que les cétones, les aldéhydes, les chlorures d'acides et les anhydrides. Par exemple, le stéroïde suivant contenant un ester et une cétone est réduit en ester-alcool sans problème avec le NaBH₄. Le LiBH₄ est intermédiaire et peut réduire les esters mais pas les acides.

Il est même possible de réduire un aldéhyde en présence d’une cétone avec les réactifs NaB(OAc)₃H ou NaBH₃CN. Ces réactifs sont encore moins puissants que le NaBH₄ et leur réactivité est fortement diminuée par l’effet stérique supplémentaire des cétones.
Étonnamment, il est tout de même possible de réduire les acides carboxyliques en présence d'esters ou même de cétones. C'est grâce au diborane qui procède par un mécanisme différent unique aux acides. La première étape est une réaction acide-base de Lewis pour former une espèce borane. Puisque les acides et les amides sont de meilleures bases de Lewis que les esters, ils réagissent plus vite que celui-ci. Cependant, les aldéhydes et les cétones réagissent plus vite que les amides et les esters et se font aussi réduire en alcools par un excès de diborane. Seuls les chlorures d'acides et les anhydrides ne réagissent pas du tout avec le diborane. On peut donc réduire un acide carboxylique en présence d'une cétone, d'un amide ou d'un ester. De même on peut réduire un aldéhyde, une cétone ou un amide en présence d'un ester.

Dans la réduction des acides, les premières étapes consistent à former un dérivé d'ester boronique. Celui-ci rend le carbonyle très nucléophile, et donc favorable à la réduction par le diborane.
Pour les esters, les cétones et les aldéhydes, le mécanisme est très similaire à celui de la réduction des acides carboxyliques, mais sans la formation de l'ester boronique.

Les amides sont réduits jusqu’aux amines correspondantes via l’ion iminium, comme c’était le cas pour leur réduction avec LiAlH₄ ou d’autres hydrures semblable. Le mécanisme de réduction de l’iminium ressemble à celui de l’hydroboration d’une double liaison.
La slaframine est un alkaloïde qui cause une salivation excessive chez les ruminants qui sont infectés par un champignon microscopique. Ceux-ci font une tâche noire sur la langue des animaux et sont connus sous le nom de ‘black patch’.

![Diagram of slaframine]

Avec un réducteur encombré et moins réactif comme le LiHAl(Ot-Bu)₃ il est possible de s'arrêter à l'aldéhyde lors de la réduction des chlorure d'acides. Contrairement à la réduction des esters en aldéhydes par le DIBAL, l'intermédiaire tétraédrique n'est pas stable dans le milieu réactionel, même à très basse température et produit l'aldéhyde correspondant. Mais puisque ce dernier est moins réactif que le chlorure de départ, la réaction s'arrête là.

![Reduction reaction diagram]

Le tableau ci-dessous donne un aperçu de la sélectivité des hydrures face aux différents carbonyles.

<table>
<thead>
<tr>
<th>C=O</th>
<th>LiAlH₄</th>
<th>NaBH₄</th>
<th>B₂H₆</th>
<th>DIBAL, -78 °C</th>
<th>LiHAl(Ot-Bu)₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CHO</td>
<td>-CH₂OH</td>
<td>-CH₂OH</td>
<td>-CH₂OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-C(O)-C</td>
<td>-CH(OH)-C</td>
<td>-CH(OH)-C</td>
<td>-CH(OH)-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-COCl</td>
<td>-CH₂OH</td>
<td>-CH₂OH</td>
<td></td>
<td></td>
<td>-CHO</td>
</tr>
<tr>
<td>-CO₂R</td>
<td>-CH₂OH + ROH</td>
<td></td>
<td>-CH₂OH + ROH</td>
<td>-CHO</td>
<td></td>
</tr>
<tr>
<td>CONR₂</td>
<td>-CH₂NR₂</td>
<td></td>
<td>-CH₂NR₂</td>
<td>-CHO</td>
<td></td>
</tr>
<tr>
<td>CO₂H</td>
<td>-CH₂OH</td>
<td></td>
<td>-CH₂OH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.6 Addition des organométalliques (R₃C⁻)

5.6.1 Esters

Comme pour la réduction, l'addition d'organométalliques sur les dérivés d'acides carboxyliques commence par une substitution qui peut être suivie par une deuxième addition selon les conditions de réaction et la nature du carbonyl. Il est rare d'isoler la cétone intermédiaire puisque celle-ci est souvent
plus réactive que l'ester de départ. Les réactifs de Grignard et les organométralliques réagissent avec les esters pour conduire aux alcools tertiaires.

Les carbonates réagissent avec 3 molécules d'organométalliques pour donner les alcools tertiaires via deux substitutions et une addition. Les esters de l'acide formique donnent des alcools secondaires.

La pseudosemiglabrine inhibe l'agglutination des plaquettes sanguines humaines. Lors de sa synthèse par le groupe de Mike Pirrung, un alcool tertiaire a été préparé par l'action de deux équivalents de bromure de méthylmagnésium sur une lactone (ester cyclique).
5.6.2 Chlorures d'acides

Les chlorures d'acides sont très réactifs avec les organolithiens ou magnésiens et on observe beaucoup de réactions secondaires. Il est rare qu'on utilise ces organométalliques avec les chlorures d'acides pour cette raison. Par contre les organocadmiens et surtout les organocuivreux sont moins réactifs et peuvent être utilisés avec les chlorures d'acides pour donner les cétones correspondantes. Puisque les chlorures sont préparés à partir des acides carboxyliques, cette méthode devient un moyen de transformer ces derniers en cétones de toutes sortes.

5.6.3 Acides carboxyliques

Il est possible de préparer des cétones directement à partir des acides carboxyliques. Cependant, les organolithiens doivent être utilisés car les organomagnésiens sont trop peu réactifs et ne passent pas la deuxième étape, i.e. l'attaque contre, les organolithiens, eux, additionnent une isopropyl pour donner un ester stable dans le milieu réactionnel. Après donner la cétone correspondante.

5.6.4 Addition-1,4 (ou de Michael)
Comme vu dans la section 2.5.3, les organocuivreux s'additionnent de façon 'Michael' ou 1,4 sur les esters α,β-insaturés. Nous vous référons donc à cette section pour la préparation des organocuivreux et pour autres détails pertinents.

![Chemical reaction diagrams](image)

5.7 Addition nucléophile sur des analogues soufrés et phosphorés

5.7.1 Dérivés de l'acide sulfurique

L'acide sulfurique possède deux fonctions OH qui peuvent être estérifiées de la même façon que celle des acides carboxyliques. Les dérivés soufrés correspondants aux acides carboxyliques sont les suivants:

- R-SO₃H : acides sulfoniques
- R-SO₂Cl : chlorures de sulfonyles
- R-SO₂OR' : esters sulfoniques (sulfonates)
- RO-SO₂OR' : sulfates
- RSO₂NR₂ : sulfonamides

La substitution par les alcools sur les chlorures de sulfonyles conduit aux esters sulfoniques avec de très bons rendements. Le mécanisme est similaire à celui de l'addition sur les chlorures d'acides. Cette transformation est très utile en synthèse car elle transforme le groupement OH en bon groupe partant. Les sulfonates sont aptes aux éliminations ou aux substitutions nucléophiles (S_N2).

Les amines peuvent aussi substituer les chlorures de sulfonates pour donner les sulfonamides correspondants. Le mécanisme est similaire à celui de la formation des chlorures d'acides. Tous les dérivés d'acides sulfoniques sont hydrolysables dans l'eau pour donner l'acide sulfonique correspondant. Les chlorures de sulfonates ne nécessitent pas de catalyseur mais les esters sulfoniques et...
les sulfonamides nécessitent une catalyse acide ou basique. Le mécanisme est identique à celui d'hydrolyse des esters et des amides ou des chlorures d'acides.

5.7.2 Dérivés de l'acide phosphorique

Une des caractéristiques importantes de l'acide phosphorique est qu'il forme une série d'anhydrides polymériques. Le dimère et le trimère sont d'un intérêt particulier dans les systèmes biologiques comme on va le voir plus loin.


Le dimère et le trimère de l'acide phosphorique jouent un rôle important dans la fonction cellulaire des systèmes biologiques. Ils sont impliqués dans certains processus de phosphorylation et de transfert
d'énergie où un nucléophile (souvent un hydroxyle) substitue une molécule d'acide phosphorique. Il y a la simple phosphorylation, la di- et la triphosphorylation.

\[
\begin{align*}
\text{HO-PO}_2^\text{-Nu} + \text{O-P-O-P-O} & \xrightarrow{+ 30 \text{ kJ/mol d'énergie}} \text{Nu} \\
\text{ADP} & \xleftarrow{} \text{ATP}
\end{align*}
\]

5.9 Problèmes dans le Clayden

Chap 12 : 1, 2, 3, 4*, 5, 6, 7, 8, 9, 10 (il y ½ mol éq. de LiAlH₄), 11*, 12
Chap 24 : 1, 2, 8, 9, 10, 11
Chap 52 : 7, 8

(* = important)
6. Les énols, les énolates et leurs réactions (Clayden, chapitres 22, 26, 27, 28 et 29).

La fonction cétone possède deux sites électrophiles. Jusqu'à maintenant, nous avons étudié la réaction d'addition de nucléophiles sur le carbone du carbonyle. Cependant, lorsqu'une base réagit avec une cétone, une toute autre réaction se produit: l'arrachement d'un proton en alpha pour générer un énolate. L'énolate est un nucléophile et peut réagir avec plusieurs électrophiles parmi lesquels figurent les carbonyles et les halogénures d'alkyles. Bien que sa charge négative réside principalement sur l'oxygène, l'énolate possède deux sites nucléophiles (voir schéma). Le site réactionnel (carbone vs oxygène) dépend de l'électrophile et des conditions de réaction.

La plupart des nucléophiles sont relativement mous et vont réagir préférentiellement sur le carbone de l'énolate. Il faut dire qu’en général, le lien carbone-carbone est légèrement plus fort que le lien carbone-oxygène. De plus, les énolates forment souvent des agrégats dans les solutions de faible polarité (hexanes, THF, éther, dichlorométhane). Ainsi, les oxygènes sont reliés entre-eux par des ponts métalliques et sont relativement plus difficiles à atteindre pour l'électrophile qui choisira de réagir avec le carbone de l'énolate. Cependant, certains solvants plus polaires comme le HMPA vont briser les agrégats et exposer l'atome d'oxygène de l'énolate. Dans de telles conditions, l'alkylation des électrophiles peut se produire sur l'oxygène. Nous considérerons presque uniquement l'alkylation sur le carbone.

6.1 Mécanisme, sélectivité et équilibre des énols et énolates (Clayden chapitre 22)

6.1.1 Énols et énolates

Le processus par lequel un hydrogène est transféré du carbone en alpha de la cétone jusqu'à l'atome d'oxygène du carbonyle est appelé énolisation. C'est une tautomérisation et il ne faut pas confondre avec
la résonance car il y a déplacement d'un atome en plus du réarrangement électronique. La cétone et son (ou ses) énolate(s) sont des composés distincts en équilibre. La constante d'équilibre varie en fonction de la structure de la cétone et de l'énolate. Pour les cétones non-activées, la forme cétonique est favorisée alors que les phénols existent exclusivement sous la forme tautomère énol (de cyclohexadiénone).

L'équilibre céto-énolique est auto-catalysé, i.e. que les cétones sont assez acides pour catalyser leur propre énolisation. La vitesse d'énolisation de la majorité des cétones est extrêmement élevée (à ne pas confondre avec la constante d'équilibre: l'énolisation peut être rapide même si à l'équilibre il n'y en a qu'une faible concentration). Cependant, il est possible d'accélérer le processus d'énolisation par l'ajout d'un acide externe. Cette énolisation catalysée reste sous contrôle thermodynamique. D'autre part, la conversion d'une cétone ou d'un aldéhyde en énolate correspondant peut être catalysée par une base. La conversion cétone-énol, par l'action d'une base, peut être sous contrôle thermodynamique (réversible) ou cinétique (irréversible) selon la force de la base. Une base faible comme NaOH ou RONa produit une petite quantité d'énolate sous contrôle thermodynamique. Une base forte comme le LDA énolise complètement et irréversiblement la cétone.
Les évidences pour les mécanismes proposés ci-haut nous proviennent d'études cinétiques. Par exemple, la vitesse de bromation de la 2-propanone dans le NaOH/H₂O est proportionnelle à la concentration de la base mais pas à celle du brome.

Donc, l'étape déterminante doit être la déprotonation de la cétone et l'énolate est bromé aussitôt formé. Lorsqu'une cétone optiquement pure (possédant un centre chiral en alpha) est traitée avec du brome, il se produit un mélange racémique à la même vitesse que la bromation de la cétone indiquant que l'énolisation est l'étape déterminante de la réaction de bromation (l'énolate est achiral et l'énolisation détruit le centre chiral en alpha de la cétone).
6.1.2 Conditions thermodynamiques ou cinétiques

Il est possible d'arracher un hydrogène en alpha d'un carbonyle quelconque avec une base forte sous conditions cinétiques, i.e. irrémissiblement. Les cétones, les aldéhydes, les esters, les amides et les cyanures sont tous énolisables de cette façon. Le choix de la base et des conditions de réaction est crucial pour le succès d'une énolisation cinétique. Une base forte comme le LDA dans le THF ou l'éther peut convertir n'importe quel carbonyle en énolate de façon irréversible et complète. Des bases comme le NaH, le KH, Ph₃CLi sont aussi efficaces pour la plupart des carbonyles. Ces déprotonations peuvent se faire à basse température.

Lorsqu'une cétone présente deux sites de déprotonation, les conditions de réaction ainsi que le choix de la base vont influencer la sélectivité de l'énolisation. Une base forte et une température basse vont favoriser l'énolate cinétique, i.e. celui qui est formé le plus rapidement. La plupart du temps, cela correspond à former l'énolate le moins substitué. L'encombrement stérique rencontré par la base lors de la déprotonation est responsable de cette discrimination. Si une base faible est utilisée, ou si le carbonyle est utilisé en excès, alors l'énolate thermodynamique prédominera. Ceci correspond à former l'énolate le plus substitué car celui-ci est plus stable (pour les mêmes raisons que les alcènes plus substitués sont plus stables que les moins substitués). Une base faible génère une petite quantité d'énolate. Lorsqu'un excès de cétone est utilisé, l'énolate peut alors s'équilibrer via déprotonation d'une molécule de cétone en excès et ce processus se répète jusqu'à ce que l'énolate le plus stable s'accumule.
Cette différence thermodynamique vs cinétique peut se manifester particulièrement bien lors de réaction d'aloldolisation ou d'alkylation (voir les prochaines sections). Cependant, on peut même observer directement ces ratios d'énoles en les piégeant avec un agent alkylant silylé. Celui-ci a la particularité de réagir avec l'oxygène de l'énole pour donner l'éther d'éno silylé. Le ratio des éthers d'énoles silylés est alors égal au ratio des énoles de départ.
6.1.3 Stéréochimie et effets stéréoélectroniques

La déprotonation d’un carbonyle, même achiral, répond à des règles stéréoélectroniques strictes. Le mot ‘stéréoélectronique’ est dérivé de ‘stéréo’ (3 D) et ‘électronique’ (orbitales). Il n’est pas surprenant, en fait, que pratiquement toutes les réactions obéissent à des règles stéréoélectroniques puisque les atomes ou molécules réagissent en combinant leurs électrons et que ceux-ci se trouvent dans des orbitales de géométrie bien définies dans l’espace. Par exemple, vous savez que la réaction de substitution nucléophile bimoléculaire (SN2) se produit par une attaque du nucléophile exactement à 180 ° à l’arrière du carbone portant le groupement partant (nucléofuge). Pourquoi en est-il ainsi? Parce que l’orbitale antilante (σ*) du lien carbone-nucléofuge se retrouve exactement à l’arrière de ce carbone. Nous avons vu cela en détails au chapitre 4. Quand est-il du carbonyle et de sa déprotonation? Et bien, l’hydrogène qui se fait déprotoner DOIT ÊTRE PERPENDICULAIRE AU LIEN C=O. Cette règle est immuable et l’effet est appelé ‘effet stéréoélectronique primaire’. Un hydrogène qui ne peut atteindre cette conformation sera très difficile à déprotoner car l’anion résultant ne profitera pas de la stabilisation du carbonyle.

Cet effet provient de l’alignement nécessaire entre l’orbitale liante (σ) du lien C-H, qui possède la paire d’électrons se retrouvant dans l’énolate, et l’orbitale antilante (π*) du carbonyle qui acceptera cette paire d’électrons pour la stabiliser. Si ces deux orbitales ne sont pas parallèles, le carbonyle ne peut pas entrer en résonance avec la paire d’électrons de l’anion; cet anion devient non-stabilisé ce qui équivaut à une acidité très élevée du proton.

mauvais alignement

alignement
Qu’est-ce que ça signifie en termes concrets? Prenons l’exemple suivant. La déprotonation ne se produit que à une seule position, là où un hydrogène perpendiculaire est disponible. C’est donc une autre façon de contrôler la régiochimie de la déprotonation. Remarquez que cette règle étant ‘ primaire ’, elle supplante toutes les autres formes de contrôle de la régiochimie (comme l’effet stérique ou la stabilité de l’éolale final).

![Diagramme de chimie organique](image_url)
COMPRENDS-TU SANS DESSIN ?
CSD 6.1

n) Montrez par un dessin en 3-D de quel côté se produira la déprotonation de la cétone suivante.

\[
\begin{array}{c}
\text{Me} \\
\text{H} \\
\text{LDA, THF} \\
\text{THF, -78 °C}
\end{array}
\]

o) Dessinez la molécule suivante dans sa conformation la plus stable dans deux perspectives différentes (i.e. une seule conformation mais de deux points de vue différents).

p) Montrez en 3-D la conformation nécessaire que doit adopter cette molécule pour la décarboxylation, orbitales incluses (attn! difficile)

q) Si un atome doit être perpendiculaire au carbonyle pour partir, un électrophile doit aussi être perpendiculaire à l’énolate lorsqu’il se fait attaquer. Montrez ceci en 3-D avec les orbitales incluses.
6.2 Condensation aldolique, de Claisen et autres réactions (Clayden chapitre 27 et 28)

6.2.1 La réaction d’aldol (Clayden pp. 689-699)

L’acide gibberellique est un régulateur de croissance des plantes. Lors de sa synthèse, on a effectué une réaction d’aldol intramoléculaire entre deux aldéhydes. L’hydroxycétone formée s’est déshydratée dans le milieu pour former une énone (cétone α,β-insaturée).

Quand l’acétaldéhyde est traité avec une base diluée, le 3-hydroxybutanal est obtenu. Ceci est l’exemple le plus simple de la réaction d’aldol (‘ald’ pour aldéhyde et ‘ol’ pour alcool). Cette réaction est en fait une dimerisation catalysée par une base. Le mécanisme implique l’enolisation d’une molécule d’acétaldéhyde qui réagit ensuite avec une autre molécule d’aldéhyde non-enolisé. On utilise une base diluée et moins basique que l’enolate lui-même, ce qui fait que l’enolate n’est qu’en faible concentration et l’aldéhyde est toujours en excès.

La réaction d’aldol se fait aussi en milieu acide. L’enol est formé plutôt que l’enolate et la condensation prend place par l’attaque de l’enol sur l’aldéhyde. Les énols sont moins réactifs que les énolates et ces conditions donnent rarement de bons résultats. C’est pourquoi nous ne nous attarderons pas sur celles-ci.
Les cétones peuvent aussi participer à cette réaction mais puisque la réaction est réversible et que le carbonyle d'une cétone est beaucoup moins réactif, l'équilibre favorise la plupart du temps les réactifs de départ. Pour déplacer l'équilibre vers les produits, on utilise un appareil soxhlet ou l'acétone est continuellement passée rapidement à travers une solution insoluble d'hydroxyde de barium. Un équilibre partiel seulement s'établit et le mélange de produits finaux et de départ est renvoyé dans un ballon d'où l'acétone seulement, plus volatile, est vaporisée et retourne pour réagir. Lorsque la réaction est complète, l'hydroxycétone est récupérée en évaporant simplement l'excès d'acétone.

Les produits de condensation aldolique sont souvent instables dans le milieu basique où ils sont formés et, fréquemment, une réaction d'élimination du β-hydroxycarbonyle s'ensuit. L'élimination dépend du substrat, des conditions basiques et de la température. Il n'est pas toujours facile de prévoir si l'élimination se produira. Par exemple, la réaction d'aldol de l'acétone en milieu NaOH donne le carbonyle α,β-insaturé avec un bon rendement. Il faut utiliser les conditions décrites ci-dessus (Ba(OH)$_2$) pour pouvoir isoler la β-hydroxycétone. Cependant, l'acétaldéhyde donne peu de produit d'élimination avec NaOH, possiblement parce que l'aldéhyde α,β-insaturé est moins stable.
Lorsque deux aldéhydes différents sont placés dans des conditions de condensation aldolique, un mélange de plusieurs produits est obtenu. Chacun des deux aldéhydes peut s'énoliser et servir de nucléophile sur chacun des deux électrophiles disponibles, i.e. les deux aldéhydes. Pour cette raison, ces aldols mixtes sont peu utilisés en synthèse sauf si un des aldéhydes est non-énolisable.

C'est le cas par exemple du benzaldéhyde qui ne possède pas d'hydrogène en alpha du carbone. Ce dernier est mis en excès pour s'assurer qu'il soit le seul à réagir comme électrophile.
Lorsqu'une cétone est condensée avec un aldéhyde, la cétone sert presque toujours de nucléophile alors que l'aldéhyde est l'électrophile. La plus grande réactivité de l'aldéhyde comme électrophile est responsable de ce phénomène. La dimérisation de l'aldéhyde est parfois problématique, mais la plupart du temps, l'enolate de la cétone est plus stable car plus substitué et l'équilibre penche donc en faveur du produit d'aldol mixte.

Les hydroxycarbonyles peuvent être déshydratés en chauffant avec une base ou un acide. Chacun des hydroxycarbonyles requiert une température différente pour la déshydratation, certains en chauffant à plus de 100 °C, d'autres à la température de la pièce. La formation du système conjugué énone (cétone α,β-insaturée) favorise l'élimination. Par exemple, lorsque le benzaldéhyde est utilisé, le seul produit isolable de la condensation aldolique est le produit d'élimination. Dans ce cas, la conjugaion du phényle stabilise d'avantage le produit déshydraté.

La meilleure façon de réussir des aldols mixtes est de préformer l’enolate à basse température avec une base forte et d’additionner l’aldéhyde par la suite. L’enolate de lithium est le plus souvent préparé en utilisant l’amidure de diisopropyllithium (LDA, de l’anglais lithium diisopropyl amide). La déprotonation du carbonyl par le LDA est rapide et irréversible. Tout le carbonyl est transformé en énolate avant que celui-ci ne puisse condenser sur lui-même. Le mécanisme diffère légèrement puisqu’il y a chéléation ou coordination entre le lithium de l’énolate et le carbonyl de l’aldéhyde. L’état de transition qui mène au produit final est cyclique (on appelle ce genre d’état de transition Zimmerman-Traxler du nom des chimistes qui les ont décrit en premier).
Lorsque l'énuolate possède un ou deux substituants, le produit d'aldolisation contient un mélange de diastéréoisomères (combien y a-t-il de produits en tout?). Nous ne verrons pas dans ce cours comment contrôler leur formation de façon sélective (stéréocontrôle) mais ceux d’entre vous qui prendront le cours COR508 le verront en détails.

La réaction d'aldol intramoléculaire est grandement utile dans la formation de cycle à 5 et 6 membres (Clayden p. 715). Les stéroïdes ont fait l'objet de plusieurs études synthétiques utilisant la réaction d'aldol comme étape clé pour la formation du cycle A dans un processus global impliquant une addition de Michael appelée l'annellation de Robinson.
Lors d'une synthèse à multiples étapes, le chimiste doit reconnaître les changements structuraux amenés par chaque transformation. L'aldol transforme deux carbonyles, dont un avec au moins un hydrogène en $\beta$, en hydroxy carbonyle ou en carbonyle $\alpha,\beta$-insaturé.

**APP 6.1:** Comment préparerais-tu le composé de droite à partir du composé de gauche?

Les esters, lactones, amides, acides carboxylliques et autres peuvent aussi servir de précurseurs d'énoïdes (il peuvent aussi servir d'électrophiles, voir prochaine section). On génère l'énoïde de ces espèces de la même façon qu'on génère l'énoïde d'une cétone, c'est à dire avec LDA dans l'éther ou le THF. (Clayden p.706)
Les esters α-bromés peuvent aussi additionner aux aldéhydes ou aux halogénures d'alkyles en présence de zinc métallique. La réaction est similaire à la réaction de Grignard puisqu'elle implique l'insertion du métal dans le lien carbone-halogène. La condensation avec les aldéhydes se nomme la réaction de Reformatsky.

**6.2.2 Condensation de Claisen (Clayden chapitre 28)**

La condensation de Claisen transforme deux esters en β-céto ester. L’un des esters sert de nucléophile alors que l’autre sert d’électrophile. Regardez la synthèse de l’alcaloïde perhydrohistrionicotoxine et le cycle à cinq membres d’un des intermédiaires est fabriqué à partir d’une condensation de Claisen. La perhydrohistrionicotoxine est une toxine que plusieurs espèces de grenouilles colorées à dart empoisonné vivant en Amérique du Sud sécrètent à partir de petites glandes incluses dans leur peau. Quelques unes de ces toxines sont utilisées par des tribus indiennes sud-américaines pour empoisonner un petit dart servant à chasser. La grenouille *Dendrobates histrionicus* sécrète une série de toxines faisant partie de la famille des histrionicotoxines et sont fréquemment utilisées comme sonde pour les phénomènes neurologiques reliés aux récepteurs d’acétylcholine.
Les esters peuvent servir de nucléophiles et d'électrophiles au même titre que les aldéhydes et les cétones. Lorsqu'un ester est traité en milieu basique, une condensation de Claisen se produit pour donner un β-céto ester. La réaction avec une base moyenne comme les alcoolates implique une série d'équilibres en solution. La formation de l'énolate est défavorable puisque l'alcoolate est une base plus faible que l'énolate. Il se forme donc une petite quantité d'énolate qui réagit tout de même avec une autre molécule d'ester pour donner un intermédiaire tétraédrique. Celui-ci se décompose pour donner le β-céto ester et une molécule d'alcoolate. Ces deux dernières étapes sont réversibles et, entropiquement, l'équilibre est déplacé légèrement vers les produits de départ. Cependant, un autre équilibre intervient, celui-là implique le β-céto ester comme base. Le β-céto ester (pKa ≈ 11) est beaucoup plus acide que l'ester de départ (pKa ≈ 23) car l'anion formé est stabilisé par deux carbonyles. La base (pKa ≈ 17) déprotone donc complètement le β-céto ester et draine l'équilibre tout entier de la réaction. On isole le produit final en acidifiant le mélange réactionnel. Les rendements en produits finaux peuvent être augmentés en distillant l'alcool formé. Ceci a pour effet de déplacer l'équilibre encore plus vers l'énolate final.
L'importance de la formation de l'énolate final dans la position de l'équilibre est démontrée par le 2-méthylpropanoate d'éthyle qui ne donne pas le β-céto ester correspondant lorsque soumis dans ces conditions. Le β-céto ester ne possède pas de proton acide comme dans le cas précédent et par conséquent l'énolisation finale est impossible. Puisque l'ester de départ est favorisé entropiquement, la réaction ne donne que du produit de départ.

La condensation de Claisen peut se faire sous conditions cinétiques. Une base comme l'hydrure de sodium, l'amidure de sodium ou le LDA est employée pour déprotoner complètement l'ester. La condensation est toujours en équilibre avec l'énolate, mais puisque l'énolate est maintenant en excès (rappelez-vous qu'il n'y avait qu'une petite quantité d'énolate avec les conditions précédentes) l'équilibre est déplacé vers le β-céto ester. Ceci est vrai même pour les cas où le β-céto ester n'est pas énolisable.
La condensation intramoléculaire de Claisen porte le nom de **condensation de Dieckmann**. Cette réaction est utile pour la formation des cycles à 5 et 6 membres.

**APP 6.2** Y-a-t'il un autre β-céto ester possible pour la réaction suivante? Si oui, lequel et pourquoi ne se forme-t-il pas?

La condensation d'esters mixtes (condensation en croisée) en présence d'une base faible n'est pas tellement utile en synthèse organique puisqu'un mélange de β-cétoesters serait obtenu. Cependant, lorsqu'un des esters est non-énolisable, la réaction devient utile et donne des produits avec de bons rendements. Particulièrement, les formiates, oxalates, carbonates et benzoates servent comme électrophiles dans cette réaction.
La condensation en croisée est possible sous conditions cinétiques. L'emploi d'une base forte comme le LDA ou le NaH permet l'énonlisation complète du premier ester. L'addition sur un autre ester conduirait peut être à des mélanges de β-céto esters comme vu précédemment. Cependant, l'usage de chlorures d'acides comme électrophiles permet l'attaque sur le carbonyle et la production d'un β-céto ester.

La 'O' alkylation accompagne souvent le produit désiré et l'ester d'énonl est même parfois le produit majoritaire. Pourquoi la réaction d’aldolisation ne posait-elle pas ce problème?

La condensation entre une cétone et un ester est aussi possible. La cétone possède les protons les plus acides et servira donc de nucléophile. L'ester est moins réactif que la cétone pour l'addition, cependant,
la formation du produit de la réaction d'alcool est réversible alors que le produit \( \beta \)-dicétone est énolisé ce qui déplace l'équilibre vers le produit final.

\[
\begin{align*}
\text{OEt} & \quad \text{EtONa} \quad \text{EtOH} \\
\text{Me} & \quad \text{OEt} \quad \text{Me} \quad \text{OEt} \quad \text{Me} \quad \text{EtONa} \quad \text{EtOH}
\end{align*}
\]

\( \text{minoritaire} \quad \text{majoritaire} \)

**APP 6.3** Par exemple, l'helminthosporal a été fabriqué à partir de l'alcool propargylique et implique une condensation de Claisen entre une cétone et le formiate d'éthyle. Notez les réactions suivantes. D'abord, énolisation et addition-1,4 sur la méthylvinylcétone. Puis le méthanoate de potassium fait un rétro-Claisen pour donner le composé cétone. Quel est le mécanisme de cette réaction? Voyons cette réaction en plus grand détails à la section suivante.

\[
\begin{align*}
\text{Me} & \quad \text{OHC} \\
\text{i-Pr} & \quad \text{CHO} \\
\text{Me} & \quad \text{O} \\
\text{EtOH} \quad \text{Me} & \quad \text{O} \\
\text{Me} & \quad \text{EtOH} \quad \text{NaOMe}
\end{align*}
\]

\( \text{H}_2, \text{EtOH} \quad \text{NaOMe} \quad \text{HCO}_2\text{Et} \quad \text{Et}_3\text{N} \quad \text{K}_2\text{CO}_3 \)

\( \text{Pd-Al}_2\text{O}_3 \quad \text{Ph, } \Delta \quad \text{CH}_2\text{Cl}_2 \quad \text{EtOH, } \Delta \)

\( (+)-\text{Carvone} \quad \text{Helminthosporal} \)
6.2.3 Fragmentation des composés β-dicarbonyles

Les β-céto esters peuvent se fragmenter par un processus qui est essentiellement l'inverse de la condensation de Claisen. Cette réaction peut même être problématique lors d'une condensation de Claisen lorsque l'équilibre favorise le produit de départ. La force motrice de la condensation de Claisen est la déprotonation du céto ester produit. Mais qu'arrive-t-il lorsqu'il n'y a pas de proton disponible ? Alors l'alkoxyde peut revenir attaquer la cétone et provoquer la réaction inverse (voir section 6.2.2). À cause de l'entropie et à cause de l'équilibre défavorable entre l'énolate et l'ester, souvent l'équilibre sera déplacé vers les esters de départ.

![Diagramme de la fragmentation des β-dicarbonyles](image)

Si le β-céto ester est formé par une autre route synthétique, il est possible de le fragmenter en utilisant l'ion hydroxyde ou alkoxyle. La réaction est appelée rétro-Claisen puisque le mécanisme est exactement l'inverse de celui de la condensation du même nom. La fumagilline est un antibiotique entre autre utilisé sur les colonies d’abeilles pour les protéger durant l’hivernisation. Sa synthèse débute avec l’acétoacétate de méthyle qui est alkylé avec un bromure allylique (voir section 6.3). Puis, une réaction de rétro-Claisen est effectuée sur le produit d’alkylation pour donner un ester. La réaction de rétro-Claisen fonctionne ici car l’acétate d’éthyle formé est enlevé par distillation lors de la réaction. Ceci montre bien que la condensation de Claisen est réversible.

![Diagramme de la synthèse de la fumagilline](image)

Comme nous avons vu dans la synthèse de l’helminthosporal, il est possible de fragmenter un dicarbonyl en deux portions. Si le nucléophile utilisé est un alcoolate, il s’agit d’un rétro-Claisen. Si le nucléophile est l’ion hydroxyde, un acide carboxylique est formé au lieu d’un ester et la déprotonation de l’acide rend le tout irréversible.
6.2.4 Décarboxylation (Clayden pp. 678-679)

Les β-céto acides ou les β-diacides peuvent facilement perdre une molécule de dioxyde de carbone. En fait, il suffit de chauffer ces produits pour effectuer la décarboxylation par un mécanisme cyclique avec formation de l'énol. La perte d'un gaz est une force motrice importante et la réaction profite aussi du point de vue entropique.

Grace à cette réaction, il est possible d'utiliser la condensation de Claisen pour fabriquer des cétones non-symétriques via la saponification du β-céto ester produit suivie de la décarboxylation. L'ester sert donc d'activateur pour la déprotonation et est ensuite enlevé par décarboxylation. Par exemple, le pentanoate d'éthyle est acylé (ajout d'un acyle = carboxyle) avec le chlorure d'acétyle. L'hydrolyse de l'ester et la décarboxylation procurent la 2-hexénone. Cette séquence est équivalente à l'addition du dibutyl cuprate de lithium (Bu₂CuLi) sur le chlorure d'acétyle (voir section 3.6.2).
La force motrice étant le départ du dioxyde de carbone, il n'en reste pas moins que seuls les acides ayant un groupe stabilisateur d'anion en β sont capables de décarboxylation. Les carbonyles ne sont pas les seuls groupements qui peuvent stabiliser l'anion. Les nitriles, les sulfones, et autres stabilisateurs d'anion permettent la réaction de décarboxylation.

6.3 La réaction d'alkylation

6.3.1 Les composés β-dicarbonyles (Clayden pp. 676-679)

Nous avons vu que la fumagilline est fabriquée à partir de l'alkylation de l'acétoacétate de méthyle (voir section précédente). Lorsque deux groupements électroattracteurs stabilisent la charge négative, la formation de l'énolate devient facile même avec des bases plus faibles. Ces composés appelés méthylènes actifs comprennent les malonates, acétoacétates, malonitriles, et bien d'autres. Ces composés ont des pKa beaucoup plus faible (~11) que les énolates simples (~23).
La réaction d'alkylation de ces composés commence par la déprotonation qui peut s'effectuer avec une base faible comme l'alcoolate correspondant à l'ester (par exemple). Lorsque le substrat est un ester, la base est souvent l'alcoolate correspondant pour éviter la transestérification. Puis on ajoute l'agent alkylant. La réaction d'alkylation procède typiquement par un mécanisme SN₂ et il est difficile (mais pas impossible) dans ces conditions d'utiliser des agents alkylants tertiaires (SN₁). L'énoolate va souvent éliminer les substrats tertiaires plutôt que de les alkyles.
Lorsqu'il y a deux hydrogènes disponibles, la dialkylation est possible et même parfois difficile à éviter. Par exemple, avec un excès de base et d'agent alkylant, l'acétoacétate d'éthyle est alkylé deux fois pour donner un bon rendement de produit de dialkylation. Les produits cycliques sont facilement préparés par la dialkylation de ce genre d'énolate.

La décarboxylation des adduits conduit aux produits d'alkylation des énolates normaux. Il y a un avantage inhérent à cette méthode indirecte puisque la position de l'énolate est dictée par la présence des deux groupements électroattracteurs lors de la déprotonation. On évite ainsi la formation problématique de régioisomères lors de l'alkylation des monoénolates.

**alkylation directe d'une cétone dissymétrique**

**alkylation indirecte via le β-céto ester et décarboxylation**

6.3.2 *Les dianions des composés β-dicarboxylys (Clayden p.683)*

Même si cela peut paraître improbable à première vue, il est aussi possible de faire réagir sélectivement l'énolate le moins stable d'un composé β-dicarboxyle (e.g. celui à droite sur la figure ci-dessous). Comment? En fait, la difficulté est de le générer, pas de le faire réagir. Vous comprendrez qu'étant
moins stable, il est en fait plus réactif que celui de gauche. Mais comment générer celui de droite puisque celui de gauche est beaucoup plus stable? La base n’ira-t-elle pas déprotoner les protons les plus acides?

![Diagram](image)

Vous remarquerez que sur la structure de l’énolate de gauche, il y a encore des protons relativement acides. En effet, les protons des méthyles sont encore acides puisqu’il reste un carbonyle capable de stabiliser la charge négative lors de la déprotonation. L’espèce résultante est appelé un dianion et est beaucoup plus réactive que le monoanion des méthylènes activés.

![Diagram](image)

Ce dianion réagit donc avec des électrophiles (halogénures d’alkyle, aldéhydes etc.) de façon régiosélective. Seul l’anion sur le carbone terminal réagira car l’énolate qui reste après la réaction est beaucoup plus stable. Si on ajoute un seul équivalent de l’électrophile, il n’y aura aucune réaction au carbone central. Celui-ci est beaucoup moins réactif et ne peut compétitionner pour l’électrophile. De même, l’énolate qui est produit lors de la réaction (celui de droite dans la figure ci-dessous) ne réagira pas non plus. En mettant un excès de l’électrophile et en augmentant la température, il serait peut-être possible de faire réagir l’énolate central, mais seulement après une première alkylation sur l’énolate le plus réactif.
6.3.3 Alkylation vs acylation (Claisen) et (C)- vs (O)-alkylation

Si une base faible, comme un alcoolate ou l'hydroxyde de sodium, par exemple, est utilisée pour déprotonner un simple ester, une cétone ou un aldéhyde, la réaction d'alkylation risque d'être en compétition avec la condensation de Claisen ou la réaction d'alold que nous avons vu aux sections 6.2. Ceci est dû au fait que l'équilibre entre l'éno late et le carboxyle favorise ce dernier avec une base faible. Donc l'éno late rencontre deux réactifs potentiels, soit l'agent alkylant et le carboxyle lui-même.

Il faut donc une base suffisamment forte pour complètement convertir l'ester en éno late. Une base non-nucléophile est nécessaire sinon l'attaque sur le carboxyle pourrait aussi avoir lieu. Dans ces conditions, seul l'agent alkylant est ensuite disponible pour réagir avec l'éno late.

Lorsqu'une cétone qui présente deux sites différents de déprotonation est alkylée, il faut contrôler la formation de l'éno late désiré. Les conditions thermodynamiques et cinétiques vues à la section 6.1.2 vont donner l'alkylation de l'éno late correspondant qui est alors en plus grande concentration. Il suffit de
choisir les conditions d'éénolisation appropriées et d'ajouter l'agent alkylant. Notez que la réaction d'aldol n'est pas une menace ici puisque les cétones ne sont pas de bons électrophiles pour cette réaction.

6.3.4 Énamines (Clayden pp. 671-674)

Les énamines sont les analogues azotés de l'éénol. Leur réactivité comme nucléophile peut être expliquée par le caractère dipolaire comme les structures limites de résonance le démontrent. Il n'est pas nécessaire d'activer l'énamine avec une base pour réussir une alkylation ou une acylation et les conditions n'en sont que plus douces.

Puisqu'il est possible de fabriquer l'énamine à partir du carbonyle, l'alkylation de celle-ci procure un moyen indirect d'alkyler un carbonyle sans problème de dialkylation ou de condensation de Claisen. Il suffit de traiter le sel d'iminium avec de l'eau pour l'hydrolyser après l'alkylation. Il est aussi possible d'acyler avec cette stratégie. Les chlorures d'acyles sont généralement les électrophiles de choix dans cette réaction. Aussi, les énamines additionnent préférentiellement 1,4 sur les énones et les énals.
**Alkylation**

\[
\text{alkylation}
\]

\[
\text{pH 3-6}
\]

**Addition-1,4**

\[
\text{addition-1,4}
\]

**Acylation**

\[
\text{acylation}
\]

\[
\text{a) CH}_3\text{COCl}
\]

\[
\text{b) H}_2\text{O}
\]
**APP 6.4** Nous avons vu au chapitre 2 la synthèse de l’acide rétigéranique (APP 2.9). La préparation de l’intermédiaire bicyclique A a été effectuée comme suit. Quel est le mécanisme de cette réaction?

![Diagramme de la synthèse de l'acide rétigéranique](image)

6.4 *Autres carbones nucléophiles stabilisés (Clayden pp. 664-667)*

Les anions adjacents aux groupements nitro ou nitrile ont beaucoup de similarités avec les énolates. Ils sont formés avec une base et la charge est stabilisée par résonance sur les groupements électronégatifs. Ces anions peuvent aussi additionner sur les électrophiles communs comme les aldéhydes et les cétones, les esters et leurs dérivés, ou les halogénures d’alkyles.

![Diagramme de l’addition d’anions nucléophiles](image)
La corioline est un antibiotique qui tue les bactéries gram-positives. Sa synthèse débute avec l’isobutyronitrile qui est alkylé par un bromure. On additionne ensuite un organolithien sur le cyanure comme nous l’avons vu au chapitre 4.

Beaucoup d'autres nucléophiles carbonés ont été développés dans le but de construire une plus grande variété de liens carbone-carbone. Par exemple, la formation d'un anion acyle est très difficile à exécuter puisque le carboxyle est lui-même susceptible de subir l'attaque nucléophile et/ou la déprotonation à la position alpha. Ce genre d'anion peut quand même être généré par l'intermédiaire d'un dithiane. Nous avons vu à la section 2.3 comment fabriquer un dithiane à partir d'un aldéhyde. Le proton sur le carbone adjacent aux soufres est suffisamment acide pour être arraché par une base très forte comme le n-buyllithium. Il est alors possible d'effectuer l'alkylation ou la réaction sur un carboxyle ou un époxyde et de 'démasquer' la fonction carboxyle une fois la réaction terminée.
L’ionomycine que nous avons discuté au chapitre 3 a été synthétisée en partie par l’addition d’un dithiane sur un aldéhyde pour donner un époxyde. Le dithiane est hydrolysé en cétone et l’alcool est oxydé pour donner la dicétone.
Un autre équivalent d'anion acyle est la cyanohydrine. Celle-ci est formée à partir d'un aldéhyde et du cyanure de potassium (section 2.2) avec la seule différence qu'on protège la fonction acide OH avec un lien O-SiR₃ (ne vous préoccupez pas de ce lien en particulier). L'hydrogène en alpha du cyanure est bien sûr acide (voir ci-haut) et peut être arraché. L'anion résultant est alkylé ou réagit avec un carbonyle, puis la fonction cyanohydrine est enlevée avec un peu d'acide et de l'eau (rappelez-vous que la fonction cétone ne forme pas facilement la cyanohydrine et celles-ci se défont en carbonyle spontanément. Section 2.2).

### 6.5 Problèmes dans le Clayden

Chap 26 : 1, 2*, 3, 4*, 5, 11, 12, 13, 14  
Chap 27 : 1, 2, 3*, 5, 6 (piège :Cannizaro), 9*, 12, 13*, 14  
Chap 28 : 1, 2*, 3 (1ère étape), 4*, 5, 6, 7, 10, 11*, 12, 13  
(*important)
1. Les mécanismes réactionnels

1.1 Généralités

Les mécanismes réactionnels ne sont pas toujours faciles à déterminer avec précision. Il y a plusieurs raisons pour cela : 1. tous les intermédiaires (neutres, ioniques, radicalaires etc.) ne sont souvent pas connus puisqu’on ne peut les isoler; 2. il peut y avoir plusieurs voies mécanistiques possibles qui sont presque indifférentiables; 3. une réaction peut suivre plus d’un chemin mécanistique.

Quel genre d’informations veut-on se procurer sur un mécanisme? Principalement, on veut savoir quels intermédiaires sont impliqués dans une réaction. Par exemple, lors de l’oxydation d’un alcool, est-ce que l’espèce oxydante est H₂CrO₇ ou CrO₃ ? De plus, il est utile de connaître l’ordre et le sens (polarité) des étapes de réaction. Est-ce que l’alcool attaque le réactif de chrome ou est-ce l’inverse? Quelle est l’étape déterminante (lente) de la réaction? Toutes ces informations servent à mieux comprendre une réaction pour ultimement soit l’améliorer soit en inventer d’autres semblables ou encore en inventer d’autres qui complémentent celle-ci de quelques façons (types de substrats, stéréochimie, chimiosélectivité etc.)
faciles à identifier mais il est rare qu’on puisse les isoler car ils ne sont pas souvent stables. Il est possible de ‘trapper’ un intermédiaire radicalaire ou ionique en le faisant réagir avec une autre molécule et de deviner ainsi sa présence par le fait même; 2. l’étude de la cinétique (vitesse) de réaction; 3. utilisation des effets isotopiques.

1.2 Utilisation des isotopes.

1.2.1 Marquage isotopique

Le marquage isotopique est un moyen ingénieux de différencier deux mécanismes possibles. Par exemple, si on fait l’hydrolyse de l’acétate de méthyle où tous les oxygènes de la soude et de l’eau sont des isotopes 18, on détecte un oxygène 18 dans le produit final. Si l’hydroxyde de sodium attaquait le groupement méthyle pour éjecter l’anion acétate (mécanisme au bas du schéma), alors le méthanol produit devrait posséder un oxygène 18 mais pas l’acide carboxylique produit, ce qui n’est pas le cas. Le marquage isotopique peut se faire avec n’importe quel atome, en autant que l’isotope soit détectable et que les produits marqués soient disponibles. Les sources les plus communes de molécules marquées sont le CO₂ (carbone 13 ou 14 ou oxygène 18), l’eau (deutérium ou oxygène 18) et l’acide acétique (carbone 13 ou 14, deutérium ou oxygène 18).

1.2.1 Effet cinétique isotopique

Les réactions chimiques impliquent le bris et la formation de liens chimiques. La vitesse de bris d’un lien dépend de l’énergie vibrationnelle, et donc du poids des atomes qui composent le lien. Puisque le deutérium est plus lourd que l’hydrogène, il est donc logique, par exemple, que les liens H-D ou D-D se brisent plus lentement que le lien H-H de l’hydrogène moléculaire. Comment utiliser ce phénomène pour éclaircir un mécanisme? Et bien, si la vitesse d’une réaction dépend de son étape la plus lente (qu’on appelle étape déterminante) et que le bris d’un lien avec un hydrogène est impliqué dans cette étape déterminante, alors substituer l’hydrogène pour un deutérium devrait ralentir la réaction. Il s’agit bien sûr d’un petit effet, la réaction étant entre 1 à 7 fois plus lente (k₈/k₇ = 1 à 7) dépendamment de l’avancement de ce bris de lien à l’état de transition (si le bris du lien X-H est très avancé à l’état de transition, le k₈/k₇ sera près de 7 et il sera près de 1 si le bris n’est presque pas commencé). Si par contre, l’étape en question n’est pas déterminante, la substitution ne causera aucun changement à la vitesse de réaction (k₈/k₇ = 1).
La vitesse d'élimination du Cr(IV) est déterminante lors de l’oxydation des alcools (voir section 3.1.1). Cette élimination implique le bris d’un lien C-H. Et bien, la réaction impliquant un deutérium à la place de l’hydrogène (voir schéma) procède de 6 à 7 fois moins vite.

2. Les diagrammes d’énergie

Les réactions chimiques dépendent de la $\Delta G^\circ$, i.e. de la différence d'énergie, entre les réactifs et les produits. Pour qu'il y ait réaction, il faut une perte d'énergie globale (gain en stabilité) et une barrière d'énergie surmontable. Le diagramme d'énergie suivant est typique pour les réactions chimiques en général (chaque réaction peut avoir un diagramme d'énergie qui diffère de celui-ci, mais les principes restent les mêmes). Considérez une réaction entre A et une molécule B-C. En général, il faut briser le lien rattachant B et C avant de former celui entre A et B. Le diagramme représente l'énergie globale de la réaction. Ainsi, l'énergie de la réaction augmente au tout début puisqu'on doit fournir de l'énergie pour briser le lien B-C et à cause de la répulsion stérique et électronique entre A et B-C. Au bout d'un moment, l'état de transition est atteint. Cet état correspond à la plus haute valeur énergétique sur la courbe, là où l'énergie recommencera à chuter compte tenu du dégagement d'énergie créé par la formation du lien A-B. L'énergie requise pour passer de A + B-C à l'état de transition est appelée énergie d'activation. Cette énergie est directement responsable de la vitesse globale de la réaction: plus l'énergie d'activation est basse, plus la vitesse est élevée et vice versa. Si le système n'est pas suffisamment réactif pour surmonter cette énergie d'activation, il n'y aura pas de réaction. A la fin de la réaction, si l'énergie dégagée par la formation du lien A-B est plus forte que l'énergie fournie pour briser le lien B-C, il y a gain en stabilité (perte d'énergie) et la réaction est exothermique (c'est le $\Delta G^\circ$). Si la différence d'énergie $\Delta G^\circ$ est faible, la réaction est réversible tandis que si la différence d'énergie est forte, la réaction est irréversible.
Bien que les réactions endothermiques ne soient généralement pas observées (il y a des exceptions) il arrive parfois qu'un intermédiaire de réaction soit formé par une réaction endothermique et celui-ci donnera lieu à d'autres produits moins énergétiques. Dans ces cas, le diagramme d'énergie ressemble à ceci. L'énergie d'activation globale correspond toujours à l'énergie d'activation de l'étape la plus lente, l'étape déterminante, i.e. l'étape qui a la barrière d'activation la plus élevée. Le $\Delta G^\circ$ est toujours la différence d'énergie entre les produits de départ et les produits finaux, peu importe le nombre d'étape entre les deux.
La formation de l’énolate est endothermique si la base est faible et la déprotonation réversible (par exemple avec la base NaOH) mais cet intermédiaire peut réagir avec un électrophile pour donner un produit final plus stable. La concentration en énolate est donc faible tout au long de la réaction (il réagit plus vite qu’il n’est formé). L’énergie d’activation $Ea_2$ est à surmonter pour former le produit final mais elle n’influence en rien la vitesse globale de la réaction puisque cette étape est plus rapide que l’étape déterminante.

La situation est un peu différente lors d’une déprotonation complète de la cétone avec une base forte comme le diisopropylamidure de lithium (LDA). L’énolate est toujours moins stable que la cétone de départ et le diagramme d’énergie est identique à l’autre. Il faut comprendre que si la base était incluse dans le diagramme d’énergie, nous verrions qu’elle fournit l’énergie nécessaire pour tout transformer la cétone en énolate. Donc, la réaction possède maintenant deux étapes différentes et comme l’énolate est d’abord formé et que l’électrophile est ensuite rajouté, la vitesse de réaction dépend de la dernière étape, soit l’alkylation. Celle-ci sera plus rapide que la même étape dans les conditions ci-haut car la concentration de l’énolate est beaucoup plus grande.
3. Aromaticité

L'aromaticité est une conséquence de la résonance et se retrouve seulement dans les systèmes cycliques. Pour placer l'aromaticité dans un contexte historique plus compréhensible, il faut remonter il y a plus de cent ans où le terme "composés aromatiques" référait aux composés ayant une odeur agréable. Pensez à la vaniline (odeur de vanille), au benzaldéhyde (odeur d'épice), l'acide cinnamique (odeur de cannelle) et ainsi de suite. Plusieurs de ces produits avaient un ratio C/H très élevé (plusieurs carbois mais peu d'h ydrogènes). Ces produits naturels étaient une commodité très appréciée comme fragrances et épices. Par exemple, la gomme de benzoïne, qui contient majoritairement du PhCH(OH)C(O)Ph ainsi que de l'acide benzoïque, du benzaldéhyde, du thymol, de la vaniline, et autres, était utilisée en parfumerie et comme encens.

En 1825, Faraday isolait un nouvel hydrocarbure à partir du gaz à combustion. Il lui trouvait une formule empirique de CH. Puis, en 1834, Milšerlich à Berlin produisit le même hydrocarbure à partir de la pyrolyse de l'acide benzoïque (obtenu de la gomme de benzoïne). Il lui trouva une formule empirique plus exacte de C₆H₆. Il lui colla aussi le nom de benzène puisque le composé pouvait être formé à partir de l'acide benzoïque.
On prévoyait que le benzène, avec ces "trois doubles liaisons", réagirait comme les alcènes, composés bien connus dans ce temps (1875-1940). Pourtant, ce n'était pas du tout le cas. Le benzène était beaucoup plus stable, moins réactif, que les autres alcènes. De plus, l'addition de chlore ou de brome ne donnait pas, comme attendu, un composé dichloré, ou dibromé, mais un composé dans lequel un atome d'hydrogène avait été remplacé par un atome d'halogène.

\[
\begin{align*}
C_6H_6 + Br_2 & \rightarrow \text{aucune réaction} \\
C_6H_6 + Cl_2 (ou Br_2) + FeX_3 & \rightarrow C_6H_5Cl \text{ ou } C_6H_5Br \text{ (trois isomères si 2 eq de } X_2). \\
C_6H_6 + H_2 + Pd/C & \rightarrow \text{aucune réaction} \\
C_6H_6 + KMnO_4 + H_2O, 25 \degree C & \rightarrow \text{aucune réaction} \\
C_6H_5CH_3 + KMnO_4 + OH^-, 100 \degree C & \rightarrow C_6H_5CO_2H \text{ (le groupe méthyle oxydé de préférence aux alcènes!)}
\end{align*}
\]

Le cyclooctatétraène, lui, réagit comme les composés oléfiniques normaux.

Comment expliquer ces observations? Vers les années 1865-1870, plusieurs structures ont été proposées, mais aucune n'expliquait la réactivité du benzène avec satisfaction. Même aussi récemment que 1939, une structure erronée était proposée par Hückel.

\[
\begin{align*}
\text{Kékulé} & \ 1865 & \text{Dewar} & \ 1867 & \text{Claus} & \ 1867 & \text{Ladenburg} & \ 1869 \\
\begin{array}{c}
\text{H} \\
\text{H}
\end{array} & \begin{array}{c}
\text{H} \\
\text{H}
\end{array} & \begin{array}{c}
\text{H} \\
\text{H}
\end{array} & \begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\end{align*}
\]

Puis, apparaissent de nouvelles évidences expérimentales plus poussées et plus précises, dont la mesure de la longueur des liens C=C (benzène C=C: 1.39 Å; cyclohexène C=C: 1.34 Å, C-C: 1.54 Å). De plus, la chaleur de formation (\(\Delta H^\circ\)) du cyclohexane formé lors de l'hydrogénation du benzène est de -49.8 kcal / mol, beaucoup moins que trois fois celle de l'hydrogénation du cyclohexène (-28.6 x 3 = -85.8 kcal / mol). Cette stabilité accrue de ~ 36 kcal / mol est due à l'\textbf{aromaticité}, une nouvelle théorie mise de l'avant à partir de ces données. Les formes limites du benzène sont:
Les règles d'Hückel sont basées sur des calculs théoriques par Erich Hückel en 1931 et sont fondées sur le travail de Bamberger (1891), Robinson (1925) et Ingold (1928): LES COMPOSÉS QUI SONT:
1. planaires, cycliques, ayant un système \( \pi \) ininterrompu avec \( 4n + 2 \) électrons sont **aromatiques**
2. planaires, cycliques, ayant un système \( \pi \) ininterrompu avec \( 4n \) électrons sont **anti-aromatiques**
3. non-planaires **ou** acycliques, **ou** n'ayant pas un système \( \pi \) ininterrompu **ou** n'ayant ni \( 4n \) ou \( 4n+2 \) électrons sont **non-aromatiques**

où \( n \) = nombre entier 0,1,2,3,...... etc.

Exemples: Benzène (cyclohexatriène): planaire, cyclique, système \( \pi \) conjugué avec 6 électrons donc \( 4n+2 \) où \( n=1 \). Cyclobutadiène: planaire, cyclique, système \( \pi \) conjugué avec 4 \( \varepsilon \) donc 4n où \( n=1 \) (composé isolé seulement en matrice et extrêmement instable). Cyclooctatétraène: devrait être antiaromatique selon cette règle mais il est parfaitement stable et réagit comme des liens alcènes ordinaires: pourquoi? Puisque l'anti-aromaticité est déstabilisante, le composé va, s'il le peut, éviter une des conditions d'anti-aromaticité. C'est le cas du cyclooctatétraène qui peut se "déplanariser".

Indiquez si les composés suivants sont aromatiques, anti-aromatiques ou non-aromatiques:

La présence de certains groupes électro-attracteurs ou donneurs sur un noyau aromatique modifie la stabilité relative de celui-ci et des formes de résonance.